Manufacturing Technologies for Lightweight Applications with Thermoplastic Textile-Reinforced Sandwich Structures

  • K. Großmann
  • A. Mühl
  • C. Cherif
  • K.-H. Modler
  • F. Adam
  • M. Krahl
Conference paper

Abstract

At present times thermoplastic textile-reinforced structures are usually processed from semi-finished consolidated parts. Commonly these parts are continuously produced from woven or nonwoven preforms by means of double belt presses. Afterwards the semi-finished parts are tailored, reheated and reshaped by hot compression-moulding. Within the Collaborative Research Centre SFB 639 at TU Dresden a novel process chain is developed, consisting of near-net-shape weaving of spacer preforms from glass/polypropylene hybrid yarns in a single production step and subsequent hot compression-moulding to consolidated sandwich structures. The lecture gives an overview of the technology for weaving spacer performs and of tool kinematics for hot compression-moulding. A second issue of the presentation are simulation techniques to predict the yarn loads in complex weaving processes and to predict processing times in consolidation processes. The lecture concludes with an outlook on applications of the consolidated spacer structures in a demonstrator.

Keywords

Space Fabric Warp Yarn Moulding Press Hollow Space Textile Preform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial supports from the German Research Foundation (DFG) for the project SFB 639 are greatly appreciated. This paper deals especially with the supported subprojects A3 – “Flat-knitted and woven spacer fabrics from hybrid yarns for composites”, A4 – “Requirements for reproducible production of textile preforms” and D4 – “Textile-adapted processing technologies for plane and simply curved fundamental components with high function integration”. The authors would also like to thank other participating institutes of SFB 639 for the cooperation and the valuable discussions.

References

  1. 1.
    Abounaim, M.; Hoffmann, G.; Diestel, O.; Cherif, Ch.: Thermoplastic composite from innovative flat knitted 3D multi-layer spacer fabric using hybrid yarn and the study of 2D mechanical properties. Composites Science and Technology 70(2010)2, pp 363–370CrossRefGoogle Scholar
  2. 2.
    Herzberg, C.; Rödel, H.; Zhao, N.: Sewing technique for manufacturing spacer preform. In: Proceedings of the 2nd Aachen-Dresden International Textile Conference. December 4–5., 2008Google Scholar
  3. 3.
    Torun, A.R.; Erdem, V.; Hoffmann, G; Cherif, Ch.: High-performance spacer fabrics with orthogonal 3D-structure. Technical Textiles, 52(2009)3, pp E137–E139Google Scholar
  4. 4.
    Großmann, K.; Mühl, A.; Löser, M.; Cherif, Ch.; Hofmann, G.; Torun, A.R.: New solutions for the manufacturing of spacer preforms for thermoplastic textile-reinforced lightweight structures. Production Engineering. Res. and Dev. 4(2010)6, pp 589–597Google Scholar
  5. 5.
    Weldige, E. de; Osthus. T; Wulfhorst, B; Sixt, A.: Automatische Optimierung des Webprozesses mit Hilfe eines Simulationsmodells. International Textile Bulletin: Garn- und Flächenherstellung, 42(1996)1, pp 36–42Google Scholar
  6. 6.
    Beitelschmidt, M.: Simulation der Kett- und Warenkräfte in verschiedenen Webmaschinentypen – Simulation of warp and cloth forces in weaving machines. Melliand-Textilberichte, 81(2000)1/2, pp 45–48Google Scholar
  7. 7.
    Kuo, C.-F.J.; Tsai, C.-C.: Overall strategy for fabric folding machine system control. Part I: Dynamics modeling and controller design. The International Journal of Advanced Manufacturing Technology, (2007)31, pp 1198–1208CrossRefGoogle Scholar
  8. 8.
    Hufenbach, W.; Adam, F.; Krahl, M.; Modler, K.-H.; Hanke, U.; Großmann, K.; Rehn, S.: Novel manufacturing process for complex thermoplastic lightweight structures using adapted consolidation kinematics. In: Proceedings of the International Conference on Manufacturing of Advanced Composites (ICMAC). Belfast, March 22–24., 2011Google Scholar
  9. 9.
    McIvor, S.D.; Darby, M.I.; Wostenholm, G.H.; Yates, B.; Banfield, L.; King, R.; Webb, A.: Thermal conductivity measurements of some glassfibre- and carbonfibre-Reinforced Plastics. Journal of Material Science 25(1990), pp. 3127–3132Google Scholar
  10. 10.
    Moneke, M: Die Kristallisation von verstärkten Thermoplasten während der schnellen Abkühlung und unter Druck. Dissertation, Technische Universität Darmstadt, 2001Google Scholar
  11. 11.
    Großmann, K.; Jungnickel, G.: Thermische Simulation des Konsolidierungsprozesses für Spacer Fabrics – Thermal simulation of consolidation process of spacer fabrics. Part 1 and part 2. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 101(2006)4, pp 203–208 and 101(2006)5, pp 287–291Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • K. Großmann
    • 1
  • A. Mühl
    • C. Cherif
      • 1
    • K.-H. Modler
      • 2
    • F. Adam
      • 3
    • M. Krahl
      • 4
    1. 1.Institute of Machine Tool and Control EngineeringTU DresdenDresdenGermany
    2. 2.Institute of Textile Machinery and High Performance Material TechnologyTU DresdenDresdenGermany
    3. 3.Institute of Solid MechanicsTU DresdenDresdenGermany
    4. 4.Institute of Lightweight Engineering and Polymer TechnologyTU DresdenDresdenGermany

    Personalised recommendations