E-Antrieb.Net: Development and Production Environment for Electric Drive Trains in a SME Focused Network

  • G. Schuh
  • A. Kampker
  • T. Vogels
  • C. Nowacki
  • R. Schmitt
  • M. Harding
  • D. U. Sauer
  • M. Ecker
  • B. Ponick
  • A. Brune
  • A. Mertens
  • B. Ullrich
Conference paper

Abstract

The aim to reduce CO2 emission, rising oil prices, tightened exhaust gas rules and a growing sense for sustainable living leads to a promising market for electro mobility. This fact is underlined by numerous studies of consulting companies like Boston Consulting and Roland Berger [1, 2]. The expected sales figures for vehicles with an electric drive in 2015 get up to 400,000. The German federal government has set one million electric vehicles as target state for the year 2020. The aim is to develop Germany with the strong automotive and supplier industry as a lead market for electro mobility.

Keywords

Electric Vehicle Drive System Electric Drive Industrial Partner Drive Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The approach presented in this paper is part of the collaborative research project E-Antrieb.NET. We would like to thank our project partners, the industry representatives, the AiF, the BMWi as well as the FVA with regard to contents and the financial support of the research network E-Antrieb.NET.

References

  1. 1.
    Bohr B., Automobilzulieferer in herausfordernden Zeiten, Vortrag Stuttgarter Symposium, Stuttgart, 24.03.2009Google Scholar
  2. 2.
    Boston Consulting Group, Das nachhaltige Automobilunternehmen – oder das Comeback des Elektroautos, Study, 2008Google Scholar
  3. 3.
    McKinsey&Company, Der Trend zu energieeffizienten Pkw – Implikationen für deutsche Automobilindustrie, Automotive & Assembly, Study, 2009Google Scholar
  4. 4.
    AutoCluster.NRW, Masterplan Elektromobilität Nordrhein-Westfahlen, Study, 2009Google Scholar
  5. 5.
    Roland Berger, Winning the automotive powertrain race, Study, 2009Google Scholar
  6. 6.
    Doppelbauer M.: Energieeffiziente Elektromotoren, Internationaler ETG-Kongress, vol. 10, p. 4, Oct. 2007Google Scholar
  7. 7.
    Zabardast A., Mokhtari H.: Effect of high-efficient electric motors on efficiency improvement and electric energy saving, in Proc. Third Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies DRPT 2008, 2008, pp. 533–538Google Scholar
  8. 8.
    Dajaku G.: Electromagnetic and thermal modeling of highly utilized PM machines, Forschungsberichte Elektrische Antriebstechnik und Aktorik. Aachen: Shaker, 2006, no. 2Google Scholar
  9. 9.
    Lindström J.: Thermal model of a permanent-magnet motor for a hybrid electric vehicle, Ph.D. dissertation, Göteborg, 1999Google Scholar
  10. 10.
    BMWi:, Stand und Entwicklungspotenzial der Speichertechniken für Elektroenergie – Ableitung von Anforderungen an und Auswirkungen auf die Investitionsgüterindustrie, Final report of the BMWi commissioned study 28.08.2009Google Scholar
  11. 11.
    Rosenow, J.:, Elektroantrieb: Auto der Zukunft oder Flop des Jahrhunderts? In: kfz-betrieb Jg. 100, 11.03.2010, Nr. 10, p. 14–16Google Scholar
  12. 12.
    Boston Consulting Group: Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020, 2010Google Scholar
  13. 13.
    Kampker, A., Nowacki, C.: Simultane Entwicklung als Königsweg, Industrieanzeiger 2010/2, p. 18Google Scholar
  14. 14.
    Schmidt, A.P. et al.: Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries, Journal of Power Sources, 2010Google Scholar
  15. 15.
    Abroshan, M.; Milimonfared, J.; Malekian, K.; Rahnamaee, A.: An optimal control for saturated interior permanent magnet linear synchronous motors incorporating field weakening, In: Proc. 13th Power Electronics and Motion Control Conf. EPE-PEMC, 2008, pp. 1117–1122Google Scholar
  16. 16.
    Jeong, Y.; Sul, S.; Hiti, S.; Rahman, K.M.: Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications, In: IEEE Transactions on Industry Applications Vol. 42, No. 5, 2006, pp. 1222–1229Google Scholar
  17. 17.
    Vetter, J., Novak, P., Wagner, M.R., Veit, C., Möller, K.-C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A.: Ageing mechanisms in lithium-ion batteries, J. Power Sources, 2005, pp. 269–281Google Scholar
  18. 18.
    Newman J., Tiedemann W.: Porous-Electrode Theory with Battery Applications, AIChE Journal 21 No. 1, pp. 25–41, 1975CrossRefGoogle Scholar
  19. 19.
    Jiang F., Tan S.: Studies on charging Lithium-Ion cells at low temperatures, J. Electrochem. Soc. 153, No. 6, pp. A1081–A1092, 2006Google Scholar
  20. 20.
    Lin H.-p., Chua D., Salomon M., Shiao H-C., Hendrickson M., Plichta E., Slane S.: Low-Temperature Behavior of Li-Ion Cells, Electrochem. Solis-State Lett., Vol. 4, Issue 6, pp. A71–A73, 2001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Schuh
    • 1
  • A. Kampker
    • 1
  • T. Vogels
    • C. Nowacki
      • 1
    • R. Schmitt
      • 1
    • M. Harding
      • 1
    • D. U. Sauer
      • 2
    • M. Ecker
      • 2
    • B. Ponick
      • 3
    • A. Brune
      • 3
    • A. Mertens
      • 3
    • B. Ullrich
      • 3
    1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany
    2. 2.Institute for Power Electronics and Electrical Drives (ISEA)RWTH Aachen UniversityAachenGermany
    3. 3.Institute for Drive Systems and Power Electronics IALLeibniz Universität Hannover, IALHannoverGermany

    Personalised recommendations