Advertisement

Research and Demonstration Center for the Production of Large-Area Lithium-Ion Cells

  • G. Reinhart
  • T. Zeilinger
  • J. Kurfer
  • M. Westermeier
  • C. Thiemann
  • M. Glonegger
  • M. Wunderer
  • C. Tammer
  • M. Schweier
  • M. Heinz
Conference paper

Abstract

Electro mobility is a significant future trend justified by the efficiency as well as by the low emissions of electric drives compared to conventional internal combustion engines. One of the key issues to be solved in this context is the battery technology. In order to reduce battery costs advanced methods for the bulk production of lithium-ion cells need to be developed. Therefore, funded by the Federal Ministry of Education and Research (BMBF), the Institute of Machine Tools and Industrial Management (iwb) built up a demonstration center for the production of lithium-ion cells (DeLIZ). State of the art cell stacking technologies, such as flat winding, single sheet stacking and z-folding, have inherent drawbacks considering the final cell quality and the process yield. On the one hand, decollating and handling of nonrigid sheet type structures are complicate issues in the single sheet stacking process. On the other hand, the flat winding process affects the cell quality negatively by the applied process loads. Consequently, this paper evaluates different cell stacking methods taking into account aspects of automation and process quality. Furthermore, an innovative z-folding process is presented as a result of these investigations. Due to the increased stacking speed and the optimized separator handling, the developed z-folding process is supposed to show a higher operating efficiency than conventional stacking processes. Besides that, the cell production is improved by laser based tailoring of the electrodes, providing a more flexible cutting process which is free of tool wear and shows a reduced burr. Since each process step of the cell-assembly has a major impact on the quality of the finished lithium-ion cells, an overall quality management system is developed. After the identification of the important quality parameters, process latitudes can be defined. Furthermore, sensors for the measurement of these parameters can be selected and integrated into the demonstration center. The evaluation of the process data allows the optimization of the cell quality, the performance and safety as well as the energy efficiency and the process stability of the production system.

Keywords

Laser Welding Laser Cutting Single Sheet Battery Cell Electrode Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schutzrecht US2011/0037439A1 (2011) Bhardwaj, R. C.; Hwang, T.: Increasing Energy Density in Rechargeable Lithium Battery Cells.Google Scholar
  2. 2.
    Chen, A.; Battaglia, V.: The BATT FabLab: Road to a Better Battery. http://www.lbl.gov/Science-Articles/Archive/sabl/2007/Jul/BATT.html.
  3. 3.
    Dausinger, F. (Dissertation) Universität Stuttgart: Teubner Verlag 1995.Google Scholar
  4. 4.
    Flynn, J.-C.; Marsh, C.: Development of continuous coating technology for lithium-ion electrodes. In: American Institute of Chemical Engineers in New York (Hrsg.): IECEC-97: American Institute of Chemical Engineers 1997, S. 46–51. ISBN: 0-7803-4515-0.Google Scholar
  5. 5.
    US 5460904 (A) (1993). BELL COMMUNICATIONS RES Pr.: 30.11.1993 Gozdz, A. S.; Tarascon, J.-M.; Warren, P. C.: Electrolyte activatable lithium-ion rechargeable battery cell.Google Scholar
  6. 6.
    Hess, A.; Schuster, R.; Heider, A.; Weber, R.; Graf, T.: Continuous Wave Laser Welding of Copper with Combined Beams at Wavelengths of 1030 nm and of 515 nm. Physics Procedia 12 (2011), S. 88–94.Google Scholar
  7. 7.
    Hoffmann, A.: Qualitätsrelevante Prozessschritte für die Fertigung von Lithium-Ionen-Zellen. Garching: 11.04.2011.Google Scholar
  8. 8.
    Hoffmann, K.: Feuchtemessung durch Infrarot-Reflexion. Chemie Ingeniuer Technik (cit) 35 (1963) 1, S. 55–62.Google Scholar
  9. 9.
    Schutzrecht US 2007160901 (A1) (2007). INVENTEX CORP Pr.: 06.03.2007 Kaun, T. D.: Cell structure for electrochemical devices and method of making same.Google Scholar
  10. 10.
    Ketterer, B.; Karl; U.; Möst, D.; Ulrich, S.: Lithium-Ionen Batterien: Stand der Technik und Anwendungspotenzial in Hybrid-, Plug-In Hybrid- und Elektrofahrzeugen. Forschungszentrum Karlsruhe GmbH, Wissenschaftliche Berichte FZKA (2009) 7503, S. 1–102.Google Scholar
  11. 11.
    Klotz, K.; Sauer, D.-U.: Wo die Batterietechnik steht. mobility 2.0 - Nachhaltige Mobilität 2 (2011) 1, S. 16–19.Google Scholar
  12. 12.
    Kwade, A.: Processing of Electrodes for Lithium Ion Batteries – Influence of Process Design and Process Parameters. Goslar: 24.-25.03.2011.Google Scholar
  13. 13.
    Li, J.; Daniel, C.; Wood, D.: Materials processing for lithium-ion batteries. Journal of Power Sources 196 (2011) 5, S. 2452.Google Scholar
  14. 14.
    Lu, Y.-C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y.: Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries. Journal of the American Chemistral Society 132 (2010) 35, S. 12170-12171.Google Scholar
  15. 15.
    Sauer, D.-U.: Produktionstechnik für die Batterieproduktion. Düsseldorf: 24.02.2010.Google Scholar
  16. 16.
    WO2007/028790 (A1) (2006). Degussa AG Pr.: 05.09.2006 Schormann, A.; Hennige, V.; Hörpel, G.; Hying, C.; Pilgram, P.: Stapel aus abwechselnd übereinander gestapelten und fixierten Separatoren und Elektroden für Li-Akkumulatoren.Google Scholar
  17. 17.
    Srinivasan, V.: BATT April 2011 Quarterly Report. Washington D.C.: 2011.Google Scholar
  18. 18.
    van Schalkwijk, W. A.; Scrosati, B.: Advances in lithium-ion batteries. New York: Kluwer Academic/Plenum Publishers 2002. ISBN: 978-0-306-47356-2.Google Scholar
  19. 19.
    Schutzrecht EP 2287942 (A1) (2011). SB LiMotive Co Ltd Pr.: 23.01.2011 Yong-Sam, K.; Sung-Bae, K.: Rechargeable battery.Google Scholar
  20. 20.
    Yoshio, M.: Lithium-Ion Batteries. New York: Springer 2009. ISBN: ISBN 978-0-387-34444-7.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Reinhart
    • 1
  • T. Zeilinger
    • 1
  • J. Kurfer
    • 1
  • M. Westermeier
    • 1
  • C. Thiemann
    • 1
  • M. Glonegger
    • 1
  • M. Wunderer
    • 1
  • C. Tammer
    • 1
  • M. Schweier
    • 1
  • M. Heinz
    • 1
  1. 1.Institute for Machine Tools and Industrial Management (iwb)TU MünchenGarchingGermany

Personalised recommendations