Network Flows

Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

In this and the next chapter we consider flows in networks. We have a digraph G with edge capacities u : E.(G) → ℝ+ and two specified vertices s (the source) and t (the sink). The quadruple (G; u; s; t) is sometimes called a network.

Keywords

Undirected Graph Network Flow Minimum Capacity Distance Label Acyclic Digraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs 1993MATHGoogle Scholar
  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., and Schrijver, A. [1998]: Combinatorial Optimization. Wiley, New York 1998, Chapter 3Google Scholar
  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. [2001]: Introduction to Algorithms. Second Edition. MIT Press, Cambridge 2001, Chapter 26Google Scholar
  4. Ford, L.R., and Fulkerson, D.R. [1962]: Flows in Networks. Princeton University Press, Princeton 1962MATHGoogle Scholar
  5. Frank, A. [1995]: Connectivity and network flows. In: Handbook of Combinatorics; Vol. 1 (R.L. Graham, M. Grötschel, L. Lovász, eds.), Elsevier, Amsterdam, 1995Google Scholar
  6. Frank, A. [2011]: Connections in Combinatorial Optimization. Oxford University Press, Oxford 2011MATHGoogle Scholar
  7. Goldberg, A.V., Tardos, É., and Tarjan, R.E. [1990]: Network flow algorithms. In: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, eds.), Springer, Berlin 1990, pp. 101–164Google Scholar
  8. Gondran, M., and Minoux, M. [1984]: Graphs and Algorithms. Wiley, Chichester 1984, Chapter 5Google Scholar
  9. Jungnickel, D. [2007]: Graphs, Networks and Algorithms. Third Edition. Springer, Berlin 2007Google Scholar
  10. Phillips, D.T., and Garcia-Diaz, A. [1981]: Fundamentals of Network Analysis. Prentice-Hall, Englewood Cliffs 1981MATHGoogle Scholar
  11. Ruhe, G. [1991]: Algorithmic Aspects of Flows in Networks. Kluwer Academic Publishers, Dordrecht 1991CrossRefMATHGoogle Scholar
  12. Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 9,10,13–15Google Scholar
  13. Tarjan, R.E. [1983]: Data Structures and Network Algorithms. SIAM, Philadelphia 1983, Chapter 8Google Scholar
  14. Thulasiraman, K., and Swamy, M.N.S. [1992]: Graphs: Theory and Algorithms. Wiley, New York 1992, Chapter 12Google Scholar
  15. Ahuja, R.K., Orlin, J.B., and Tarjan, R.E. [1989]: Improved time bounds for the maximum flow problem. SIAM Journal on Computing 18 (1989), 939–954CrossRefMATHMathSciNetGoogle Scholar
  16. Borradaile, G. and Klein, P. [2009]: An O(nlogn) algorithm for maximum st-flow in a directed planar graph. Journal of the ACM 56 (2009), Article 9Google Scholar
  17. Cheriyan, J., and Maheshwari, S.N. [1989]: Analysis of preflow push algorithms for maximum network flow. SIAM Journal on Computing 18 (1989), 1057–1086CrossRefMATHMathSciNetGoogle Scholar
  18. Cheriyan, J., and Mehlhorn, K. [1999]: An analysis of the highest-level selection rule in the preflow-push max-flow algorithm. Information Processing Letters 69 (1999), 239–242CrossRefMathSciNetGoogle Scholar
  19. Cherkassky, B.V. [1977]: Algorithm of construction of maximal flow in networks with complexity of O(V 2\sqrt{E}) operations. Mathematical Methods of Solution of Economical Problems 7 (1977), 112–125 [in Russian]Google Scholar
  20. Cheung, K.K.H., Cunningham, W.H., and Tang, L. [2006]: Optimal 3-terminal cuts and linear programming. Mathematical Programming 106 (2006), 1–23CrossRefMATHMathSciNetGoogle Scholar
  21. Cheung, H.Y., Lau, L.C., and Leung, K.M. [2011]: Graph connectivities, network coding, and expander graphs. Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (2011), 190–199Google Scholar
  22. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., and Yannakakis, M. [1994]: The complexity of multiterminal cuts. SIAM Journal on Computing 23 (1994), 864–894CrossRefMATHMathSciNetGoogle Scholar
  23. Dantzig, G.B., and Fulkerson, D.R. [1956]: On the max-flow min-cut theorem of networks. In: Linear Inequalities and Related Systems (H.W. Kuhn, A.W. Tucker, eds.), Princeton University Press, Princeton 1956, pp. 215–221Google Scholar
  24. Dinic, E.A. [1970]: Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Mathematics Doklady 11 (1970), 1277–1280Google Scholar
  25. Dinitz, E.A., Karzanov, A.V., and Lomonosov, M.V. [1976]: On the structure of the system of minimum edge cuts of a graph. Issledovaniya po Diskretnoĭ Optimizatsii (A.A. Fridman, ed.), Nauka, Moscow, 1976, pp. 290–306 [in Russian]Google Scholar
  26. Edmonds, J., and Karp, R.M. [1972]: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19 (1972), 248–264CrossRefMATHGoogle Scholar
  27. Elias, P., Feinstein, A., and Shannon, C.E. [1956]: Note on maximum flow through a network. IRE Transactions on Information Theory, IT-2 (1956), 117–119Google Scholar
  28. Even, S., and Tarjan, R.E. [1975]: Network flow and testing graph connectivity. SIAM Journal on Computing 4 (1975), 507–518CrossRefMATHMathSciNetGoogle Scholar
  29. Ford, L.R., and Fulkerson, D.R. [1956]: Maximal Flow Through a Network. Canadian Journal of Mathematics 8 (1956), 399–404CrossRefMATHMathSciNetGoogle Scholar
  30. Ford, L.R., and Fulkerson, D.R. [1957]: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canadian Journal of Mathematics 9 (1957), 210–218CrossRefMATHMathSciNetGoogle Scholar
  31. Frank, A. [1994]: On the edge-connectivity algorithm of Nagamochi and Ibaraki. Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble, 1994Google Scholar
  32. Fujishige, S. [2003]: A maximum flow algorithm using MA ordering. Operations Research Letters 31 (2003), 176–178CrossRefMATHMathSciNetGoogle Scholar
  33. Gabow, H.N. [1995]: A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences 50 (1995), 259–273CrossRefMATHMathSciNetGoogle Scholar
  34. Gabow, H.N. [2006]: Using expander graphs to find vertex-connectivity. Journal of the ACM 53 (2006), 800–844CrossRefMathSciNetGoogle Scholar
  35. Galil, Z. [1980]: An O(V \frac{5} {3} E \frac{2} {3} ) algorithm for the maximal flow problem. Acta Informatica 14 (1980), 221–242CrossRefMATHMathSciNetGoogle Scholar
  36. Galil, Z., and Namaad, A. [1980]: An O(EV log2 V ) algorithm for the maximal flow problem. Journal of Computer and System Sciences 21 (1980), 203–217CrossRefMATHMathSciNetGoogle Scholar
  37. Gallai, T. [1958]: Maximum-minimum Sätze über Graphen. Acta Mathematica Academiae Scientiarum Hungaricae 9 (1958), 395–434CrossRefMATHMathSciNetGoogle Scholar
  38. Goldberg, A.V., and Rao, S. [1998]: Beyond the flow decomposition barrier. Journal of the ACM 45 (1998), 783–797CrossRefMATHMathSciNetGoogle Scholar
  39. Goldberg, A.V., and Tarjan, R.E. [1988]: A new approach to the maximum flow problem. Journal of the ACM 35 (1988), 921–940CrossRefMATHMathSciNetGoogle Scholar
  40. Gomory, R.E., and Hu, T.C. [1961]: Multi-terminal network flows. Journal of SIAM 9 (1961), 551–570MATHMathSciNetGoogle Scholar
  41. Gusfield, D. [1990]: Very simple methods for all pairs network flow analysis. SIAM Journal on Computing 19 (1990), 143–155CrossRefMATHMathSciNetGoogle Scholar
  42. Hao, J., and Orlin, J.B. [1994]: A faster algorithm for finding the minimum cut in a directed graph. Journal of Algorithms 17 (1994), 409–423CrossRefMathSciNetGoogle Scholar
  43. Henzinger, M.R., Rao, S., and Gabow, H.N. [2000]: Computing vertex connectivity: new bounds from old techniques. Journal of Algorithms 34 (2000), 222–250CrossRefMATHMathSciNetGoogle Scholar
  44. Hoffman, A.J. [1960]: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Combinatorial Analysis (R.E. Bellman, M. Hall, eds.), AMS, Providence 1960, pp. 113–128Google Scholar
  45. Hu, T.C. [1969]: Integer Programming and Network Flows. Addison-Wesley, Reading 1969MATHGoogle Scholar
  46. Jelinek, F., and Mayeda, W. [1963]: On the maximum number of different entries in the terminal capacity matrix of oriented communication nets. IEEE Transactions on Circuit Theory 10 (1963), 307–308Google Scholar
  47. Kamidoi, Y., Yoshida, N., and Nagamochi, H. [2007]: A deterministic algorithm for finding all minimum k-way cuts. SIAM Journal on Computing 36 (2007), 1329–1341CrossRefMathSciNetGoogle Scholar
  48. Karger, D.R. [2000]: Minimum cuts in near-linear time. Journal of the ACM 47 (2000), 46–76CrossRefMATHMathSciNetGoogle Scholar
  49. Karger, D.R., and Levine, M.S. [1998]: Finding maximum flows in undirected graphs seems easier than bipartite matching. Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998), 69–78Google Scholar
  50. Karger, D.R., and Stein, C. [1996]: A new approach to the minimum cut problem. Journal of the ACM 43 (1996), 601–640CrossRefMATHMathSciNetGoogle Scholar
  51. Karzanov, A.V. [1973]: On finding a maximum flow in a network with special structure and some applications. In: Matematicheskie Voprosy Upravleniya Proizvodstvom 5 (L.A. Lyusternik, ed.), Moscow State University Press, Moscow, 1973, pp. 81–94 [in Russian]Google Scholar
  52. Karzanov, A.V. [1974]: Determining a maximal flow in a network by the method of preflows. Soviet Mathematics Doklady 15 (1974), 434–437MATHGoogle Scholar
  53. King, V., Rao, S., and Tarjan, R.E. [1994]: A faster deterministic maximum flow algorithm. Journal of Algorithms 17 (1994), 447–474CrossRefMathSciNetGoogle Scholar
  54. Mader, W. [1972]: Über minimal n-fach zusammenhängende, unendliche Graphen und ein Extremalproblem. Arch. Math. 23 (1972), 553–560CrossRefMATHMathSciNetGoogle Scholar
  55. Mader, W. [1981]: On a property of n edge-connected digraphs. Combinatorica 1 (1981), 385–386CrossRefMATHMathSciNetGoogle Scholar
  56. Malhotra, V.M., Kumar, M.P., and Maheshwari, S.N. [1978]: An O( | V | 3) algorithm for finding maximum flows in networks. Information Processing Letters 7 (1978), 277–278CrossRefMATHMathSciNetGoogle Scholar
  57. Menger, K. [1927]: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10 (1927), 96–115MATHGoogle Scholar
  58. Nagamochi, H., and Ibaraki, T. [1992]: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5 (1992), 54–66CrossRefMATHMathSciNetGoogle Scholar
  59. Nagamochi, H., and Ibaraki, T. [2000]: A fast algorithm for computing minimum 3-way and 4-way cuts. Mathematical Programming 88 (2000), 507–520CrossRefMATHMathSciNetGoogle Scholar
  60. Phillips, S., and Dessouky, M.I. [1977]: Solving the project time/cost tradeoff problem using the minimal cut concept. Management Science 24 (1977), 393–400CrossRefMATHGoogle Scholar
  61. Picard, J., and Queyranne, M. [1980]: On the structure of all minimum cuts in a network and applications. Mathematical Programming Study 13 (1980), 8–16MATHMathSciNetGoogle Scholar
  62. Queyranne, M. [1998]: Minimizing symmetric submodular functions. Mathematical Programming B 82 (1998), 3–12MATHMathSciNetGoogle Scholar
  63. Rose, D.J. [1970]: Triangulated graphs and the elimination process. Journal of Mathematical Analysis and Applications 32 (1970), 597–609CrossRefMATHMathSciNetGoogle Scholar
  64. Shiloach, Y. [1978]: An O(nIlog2 I) maximum-flow algorithm. Technical Report STAN-CS-78-802, Computer Science Department, Stanford University, 1978Google Scholar
  65. Shiloach, Y. [1979]: Edge-disjoint branching in directed multigraphs. Information Processing Letters 8 (1979), 24–27CrossRefMATHMathSciNetGoogle Scholar
  66. Shioura, A. [2004]: The MA ordering max-flow algorithm is not strongly polynomial for directed networks. Operations Research Letters 32 (2004), 31–35CrossRefMATHMathSciNetGoogle Scholar
  67. Sleator, D.D. [1980]: An O(nmlogn) algorithm for maximum network flow. Technical Report STAN-CS-80-831, Computer Science Department, Stanford University, 1978Google Scholar
  68. Sleator, D.D., and Tarjan, R.E. [1983]: A data structure for dynamic trees. Journal of Computer and System Sciences 26 (1983), 362–391CrossRefMATHMathSciNetGoogle Scholar
  69. Su, X.Y. [1997]: Some generalizations of Menger’s theorem concerning arc-connected digraphs. Discrete Mathematics 175 (1997), 293–296CrossRefMATHMathSciNetGoogle Scholar
  70. Stoer, M., and Wagner, F. [1997]: A simple min cut algorithm. Journal of the ACM 44 (1997), 585–591CrossRefMATHMathSciNetGoogle Scholar
  71. Tarjan, R.E. [1972]: Depth first search and linear graph algorithms. SIAM Journal on Computing 1 (1972), 146–160CrossRefMATHMathSciNetGoogle Scholar
  72. Thorup, M. [2008]: Minimum k-way cuts via deterministic greedy tree packing. Proceedings of the 40th Annual ACM Symposium on Theory of Computing (2008), 159–165Google Scholar
  73. Tunçel, L. [1994]: On the complexity preflow-push algorithms for maximum flow problems. Algorithmica 11 (1994), 353–359CrossRefMATHMathSciNetGoogle Scholar
  74. Vazirani, V.V., and Yannakakis, M. [1992]: Suboptimal cuts: their enumeration, weight, and number. In: Automata, Languages and Programming; Proceedings of the 19th ICALP conference; LNCS 623 (W. Kuich, ed.), Springer, Berlin 1992, pp. 366–377Google Scholar
  75. Vygen, J. [2002]: On dual minimum cost flow algorithms. Mathematical Methods of Operations Research 56 (2002), 101–126CrossRefMATHMathSciNetGoogle Scholar
  76. Weihe, K. [1997]: Maximum (s, t)-flows in planar networks in O( | V | log | V | ) time. Journal of Computer and System Sciences 55 (1997), 454–475CrossRefMATHMathSciNetGoogle Scholar
  77. Whitney, H. [1932]: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54 (1932), 150–168CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations