Spanning Trees and Arborescences

  • Bernhard Korte
  • Jens Vygen
Part of the Algorithms and Combinatorics book series (AC, volume 21)


Consider a telephone company that wants to rent a subset from an existing set of cables, each of which connects two cities. The rented cables should suffice to connect all cities and they should be as cheap as possible. It is natural to model the network by a graph: the vertices are the cities and the edges correspond to the cables. By Theorem 2.4 the minimal connected spanning subgraphs of a given graph are its spanning trees.


Span Tree Undirected Graph Minimum Span Tree Minimum Weight Incidence Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs 1993, Chapter 13Google Scholar
  2. Balakrishnan, V.K. [1995]: Network Optimization. Chapman and Hall, London 1995, Chapter 1Google Scholar
  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. [2001]: Introduction to Algorithms. Second Edition. MIT Press, Cambridge 2001, Chapter 23Google Scholar
  4. Gondran, M., and Minoux, M. [1984]: Graphs and Algorithms. Wiley, Chichester 1984, Chapter 4Google Scholar
  5. Magnanti, T.L., and Wolsey, L.A. [1995]: Optimal trees. In: Handbooks in Operations Research and Management Science; Volume 7: Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995, pp. 503–616Google Scholar
  6. Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 50–53Google Scholar
  7. Tarjan, R.E. [1983]: Data Structures and Network Algorithms. SIAM, Philadelphia 1983, Chapter 6Google Scholar
  8. Wu, B.Y., and Chao, K.-M. [2004]: Spanning Trees and Optimization Problems. Chapman & Hall/CRC, Boca Raton 2004zbMATHGoogle Scholar
  9. Bock, F.C. [1971]: An algorithm to construct a minimum directed spanning tree in a directed network. In: Avi-Itzhak, B. (Ed.): Developments in Operations Research, Volume I. Gordon and Breach, New York 1971, pp. 29–44Google Scholar
  10. Borůvka, O. [1926a]: O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolnec̆nosti 3 (1926), 37–58 [in Czech]Google Scholar
  11. Borůvka, O. [1926b]: Pr̆íspevĕk k r̆es̆ení otázky ekonomické stavby. Elektrovodních sítí. Elektrotechnicky Obzor 15 (1926), 153–154 [in Czech]Google Scholar
  12. Cayley, A. [1889]: A theorem on trees. Quarterly Journal on Mathematics 23 (1889), 376–378Google Scholar
  13. Chazelle, B. [2000]: A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM 47 (2000), 1028–1047CrossRefzbMATHMathSciNetGoogle Scholar
  14. Cheriton, D., and Tarjan, R.E. [1976]: Finding minimum spanning trees. SIAM Journal on Computing 5 (1976), 724–742CrossRefzbMATHMathSciNetGoogle Scholar
  15. Chu, Y., and Liu, T. [1965]: On the shortest arborescence of a directed graph. Scientia Sinica 4 (1965), 1396–1400; Mathematical Review 33, # 1245Google Scholar
  16. Conforti, M., Cornuéjols, G., and Zambelli, G. [2010]: Extended formulations in combinatorial optimization. 4OR 8 (2010), 1–48Google Scholar
  17. Diestel, R. [1997]: Graph Theory. Springer, New York 1997zbMATHGoogle Scholar
  18. Dijkstra, E.W. [1959]: A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959), 269–271CrossRefzbMATHMathSciNetGoogle Scholar
  19. Dixon, B., Rauch, M., and Tarjan, R.E. [1992]: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing 21 (1992), 1184–1192CrossRefzbMATHMathSciNetGoogle Scholar
  20. Edmonds, J. [1967]: Optimum branchings. Journal of Research of the National Bureau of Standards B 71 (1967), 233–240zbMATHMathSciNetGoogle Scholar
  21. Edmonds, J. [1970]: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.), Gordon and Breach, New York 1970, pp. 69–87Google Scholar
  22. Edmonds, J. [1973]: Edge-disjoint branchings. In: Combinatorial Algorithms (R. Rustin, ed.), Algorithmic Press, New York 1973, pp. 91–96Google Scholar
  23. Fortune, S. [1987]: A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153–174CrossRefzbMATHMathSciNetGoogle Scholar
  24. Frank, A. [1981]: On disjoint trees and arborescences. In: Algebraic Methods in Graph Theory; Colloquia Mathematica Societatis János Bolyai 25 (L. Lovász, V.T. Sós, eds.), North-Holland, Amsterdam 1981, pp. 159–169Google Scholar
  25. Frank, A. [1979]: Covering branchings. Acta Scientiarum Mathematicarum (Szeged) 41 (1979), 77–82zbMATHGoogle Scholar
  26. Fredman, M.L., and Tarjan, R.E. [1987]: Fibonacci heaps and their uses in improved network optimization problems. Journal of the ACM 34 (1987), 596–615CrossRefMathSciNetGoogle Scholar
  27. Fredman, M.L., and Willard, D.E. [1994]: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences 48 (1994), 533–551CrossRefzbMATHMathSciNetGoogle Scholar
  28. Fujishige, S. [2010]: A note on disjoint arborescences. Combinatorica 30 (2010), 247–252CrossRefzbMATHMathSciNetGoogle Scholar
  29. Fulkerson, D.R. [1974]: Packing rooted directed cuts in a weighted directed graph. Mathematical Programming 6 (1974), 1–13CrossRefzbMATHMathSciNetGoogle Scholar
  30. Gabow, H.N. [1995]: A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences 50 (1995), 259–273CrossRefzbMATHMathSciNetGoogle Scholar
  31. Gabow, H.N., Galil, Z., and Spencer, T. [1989]: Efficient implementation of graph algorithms using contraction. Journal of the ACM 36 (1989), 540–572CrossRefMathSciNetGoogle Scholar
  32. Gabow, H.N., Galil, Z., Spencer, T., and Tarjan, R.E. [1986]: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6 (1986), 109–122CrossRefzbMATHMathSciNetGoogle Scholar
  33. Gabow, H.N., and Manu, K.S. [1998]: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Mathematical Programming B 82 (1998), 83–109zbMATHMathSciNetGoogle Scholar
  34. Jarník, V. [1930]: O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolec̆nosti 6 (1930), 57–63Google Scholar
  35. Karger, D., Klein, P.N., and Tarjan, R.E. [1995]: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42 (1995), 321–328CrossRefzbMATHMathSciNetGoogle Scholar
  36. Karp, R.M. [1972]: A simple derivation of Edmonds’ algorithm for optimum branchings. Networks 1 (1972), 265–272CrossRefzbMATHMathSciNetGoogle Scholar
  37. King, V. [1997]: A simpler minimum spanning tree verification algorithm. Algorithmica 18 (1997), 263–270CrossRefzbMATHMathSciNetGoogle Scholar
  38. Knuth, D.E. [1992]: Axioms and hulls; LNCS 606. Springer, Berlin 1992Google Scholar
  39. Korte, B., and Nešetřil, J. [2001]: Vojtĕch Jarník’s work in combinatorial optimization. Discrete Mathematics 235 (2001), 1–17CrossRefzbMATHMathSciNetGoogle Scholar
  40. Kruskal, J.B. [1956]: On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the AMS 7 (1956), 48–50CrossRefzbMATHMathSciNetGoogle Scholar
  41. Lovász, L. [1976]: On two minimax theorems in graph. Journal of Combinatorial Theory B 21 (1976), 96–103CrossRefzbMATHGoogle Scholar
  42. Nash-Williams, C.S.J.A. [1961]: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 36 (1961), 445–450CrossRefzbMATHMathSciNetGoogle Scholar
  43. Nash-Williams, C.S.J.A. [1964]: Decompositions of finite graphs into forests. Journal of the London Mathematical Society 39 (1964), 12CrossRefzbMATHMathSciNetGoogle Scholar
  44. Nešetřil, J., Milková, E., and Nešetřilová, H. [2001]: Otakar Borůvka on minimum spanning tree problem. Translation of both the 1926 papers, comments, history. Discrete Mathematics 233 (2001), 3–36Google Scholar
  45. Pettie, S., and Ramachandran, V. [2002]: An optimal minimum spanning tree algorithm. Journal of the ACM 49 (2002), 16–34CrossRefMathSciNetGoogle Scholar
  46. Prim, R.C. [1957]: Shortest connection networks and some generalizations. Bell System Technical Journal 36 (1957), 1389–1401Google Scholar
  47. Prüfer, H. [1918]: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27 (1918), 742–744Google Scholar
  48. Shamos, M.I., and Hoey, D. [1975]: Closest-point problems. Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science (1975), 151–162Google Scholar
  49. Sylvester, J.J. [1857]: On the change of systems of independent variables. Quarterly Journal of Mathematics 1 (1857), 42–56Google Scholar
  50. Tarjan, R.E. [1975]: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22 (1975), 215–225CrossRefzbMATHMathSciNetGoogle Scholar
  51. Tutte, W.T. [1961]: On the problem of decomposing a graph into n connected factor. Journal of the London Mathematical Society 36 (1961), 221–230CrossRefzbMATHMathSciNetGoogle Scholar
  52. Zhou, H., Shenoy, N., and Nicholls, W. [2002]: Efficient minimum spanning tree construction without Delaunay triangulation. Information Processing Letters 81 (2002), 271–276CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations