The Traveling Salesman Problem

  • Bernhard Korte
  • Jens Vygen
Part of the Algorithms and Combinatorics book series (AC, volume 21)


In Chapter 15 we introduced the TRAVELING SALESMAN PROBLEM (TSP) and showed that it is NP-hard (Theorem 15.43). The TSP is perhaps the best-studied NP-hard combinatorial optimization problem, and there are many techniques which have been applied. We start by discussing approximation algorithms in Sections 21.1 and 21.2. In practice, so-called local search algorithms (discussed in Section 21.3) find better solutions for large instances although they do not have a finite performance ratio.


Local Search Approximation Algorithm Travel Salesman Problem Travel Salesman Problem Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Applegate, D.L., Bixby, R., Chvátal, V., and Cook, W.J. [2007]: The Traveling Salesman Problem: A Computational Study. Princeton University Press 2007Google Scholar
  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., and Schrijver, A. [1998]: Combinatorial Optimization. Wiley, New York 1998, Chapter 7Google Scholar
  3. Gutin, G., and Punnen, A.P. [2002]: The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht 2002zbMATHGoogle Scholar
  4. Jungnickel, D. [2007]: Graphs, Networks and Algorithms. Third Edition. Springer, Berlin 2007, Chapter 15Google Scholar
  5. Lawler, E.L., Lenstra J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. [1985]: The Traveling Salesman Problem. Wiley, Chichester 1985zbMATHGoogle Scholar
  6. Jünger, M., Reinelt, G., and Rinaldi, G. [1995]: The traveling salesman problem. In: Handbooks in Operations Research and Management Science; Volume 7; Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995Google Scholar
  7. Papadimitriou, C.H., and Steiglitz, K. [1982]: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, Englewood Cliffs 1982, Section 17.2, Chapters 18 and 19Google Scholar
  8. Reinelt, G. [1994]: The Traveling Salesman; Computational Solutions for TSP Applications. Springer, Berlin 1994Google Scholar
  9. Aarts, E., and Lenstra, J.K. [1997]: Local Search in Combinatorial Optimization. Wiley, Chichester 1997zbMATHGoogle Scholar
  10. Applegate, D., Bixby, R., Chvátal, V., and Cook, W. [2003]: Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems. Mathematical Programming B 97 (2003), 91–153zbMATHGoogle Scholar
  11. Applegate, D., Cook, W., and Rohe, A. [2003]: Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal on Computing 15 (2003), 82–92CrossRefMathSciNetGoogle Scholar
  12. Arora, S. [1998]: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45 (1998), 753–782CrossRefzbMATHMathSciNetGoogle Scholar
  13. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., and Saberi, A. [2010]: An O(logn ∕ loglogn)-approximation algorithm for the asymmetric traveling salesman problem. Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (2010), 379–389Google Scholar
  14. Berman, P., and Karpinski, M. [2006]: 8/7-approximation algorithm for (1,2)-TSP. Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (2006), 641–648Google Scholar
  15. Boyd, S.C., and Cunningham, W.H. [1991]: Small traveling salesman polytopes. Mathematics of Operations Research 16 (1991), 259–271CrossRefzbMATHMathSciNetGoogle Scholar
  16. Burkard, R.E., Deĭneko, V.G., and Woeginger, G.J. [1998]: The travelling salesman and the PQ-tree. Mathematics of Operations Research 23 (1998), 613–623CrossRefMathSciNetGoogle Scholar
  17. Carr, R. [1997]: Separating clique trees and bipartition inequalities having a fixed number of handles and teeth in polynomial time. Mathematics of Operations Research 22 (1997), 257–265CrossRefzbMATHMathSciNetGoogle Scholar
  18. Chalasani, P., Motwani, R., and Rao, A. [1996]: Algorithms for robot grasp and delivery. Proceedings of the 2nd International Workshop on Algorithmic Foundations of Robotics (1996), 347–362Google Scholar
  19. Chandra, B., Karloff, H., and Tovey, C. [1999]: New results on the old k-opt algorithm for the traveling salesman problem. SIAM Journal on Computing 28 (1999), 1998–2029CrossRefzbMATHMathSciNetGoogle Scholar
  20. Christofides, N. [1976]: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh 1976Google Scholar
  21. Chvátal, V. [1973]: Edmonds’ polytopes and weakly hamiltonian graphs. Mathematical Programming 5 (1973), 29–40CrossRefzbMATHMathSciNetGoogle Scholar
  22. Crowder, H., and Padberg, M.W. [1980]: Solving large-scale symmetric travelling salesman problems to optimality. Management Science 26 (1980), 495–509CrossRefzbMATHMathSciNetGoogle Scholar
  23. Dantzig, G., Fulkerson, R., and Johnson, S. [1954]: Solution of a large-scale traveling-salesman problem. Operations Research 2 (1954), 393–410CrossRefMathSciNetGoogle Scholar
  24. Englert, M., Röglin, H., and Vöcking, B. [2007]: Worst case and probabilistic analysis of the 2-opt algorithm for the TSP. Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (2007), 1295–1304Google Scholar
  25. Feige, U., and Singh, M. [2007]: Improved approximation algorithms for traveling salesperson tours and paths in directed graphs. Proceedings of the 10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems; LNCS 4627 (M. Charikar, K. Jansen, O. Reingold, J.D.P. Rolim, eds.), Springer, Berlin 2007, pp. 104–118Google Scholar
  26. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., and de Wolf, R. [2011]: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. Manuscript, 2011Google Scholar
  27. Frank, A., Triesch, E., Korte, B., and Vygen, J. [1998]: On the bipartite travelling salesman problem. Report No. 98866, Research Institute for Discrete Mathematics, University of Bonn, 1998Google Scholar
  28. Frieze, A.M., Galbiati, G., and Maffioli, F. [1982]: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12 (1982), 23–39CrossRefzbMATHMathSciNetGoogle Scholar
  29. Garey, M.R., Graham, R.L., and Johnson, D.S. [1976]: Some NP-complete geometric problems. Proceedings of the 8th Annual ACM Symposium on the Theory of Computing (1976), 10–22Google Scholar
  30. Grötschel, M., and Padberg, M.W. [1979]: On the symmetric travelling salesman problem. Mathematical Programming 16 (1979), 265–302CrossRefzbMATHMathSciNetGoogle Scholar
  31. Grötschel, M., and Pulleyblank, W.R. [1986]: Clique tree inequalities and the symmetric travelling salesman problem. Mathematics of Operations Research 11 (1986), 537–569CrossRefzbMATHMathSciNetGoogle Scholar
  32. Held, M., and Karp, R.M. [1962]: A dynamic programming approach to sequencing problems. Journal of SIAM 10 (1962), 196–210zbMATHMathSciNetGoogle Scholar
  33. Held M., and Karp, R.M. [1970]: The traveling-salesman problem and minimum spanning trees. Operations Research 18 (1970), 1138–1162CrossRefzbMATHMathSciNetGoogle Scholar
  34. Held, M., and Karp, R.M. [1971]: The traveling-salesman problem and minimum spanning trees; part II. Mathematical Programming 1 (1971), 6–25CrossRefzbMATHMathSciNetGoogle Scholar
  35. Helsgaun, K. [2009]: General k-opt submoves for the LinKernighan TSP heuristic. Mathematical Programming Computation 1 (2009), 119–163CrossRefzbMATHMathSciNetGoogle Scholar
  36. Hurkens, C.A.J., and Woeginger, G.J. [2004]: On the nearest neighbour rule for the traveling salesman problem. Operations Research Letters 32 (2004), 1–4CrossRefzbMATHMathSciNetGoogle Scholar
  37. Hwang, R.Z., Chang, R.C., and Lee, R.C.T. [1993]: The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9 (1993), 398–423CrossRefzbMATHMathSciNetGoogle Scholar
  38. Johnson, D.S., McGeoch, L.A., and Rothberg, E.E. [1996]: Asymptotic experimental analysis for the Held-Karp traveling salesman bound. Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (1996), 341–350Google Scholar
  39. Johnson, D.S., Papadimitriou, C.H., and Yannakakis, M. [1988]: How easy is local search? Journal of Computer and System Sciences 37 (1988), 79–100CrossRefzbMATHMathSciNetGoogle Scholar
  40. Jünger, M., and Naddef, D. [2001]: Computational Combinatorial Optimization. Springer, Berlin 2001CrossRefzbMATHGoogle Scholar
  41. Karp, R.M. [1977]: Probabilistic analysis of partitioning algorithms for the TSP in the plane. Mathematics of Operations Research 2 (1977), 209–224CrossRefzbMATHMathSciNetGoogle Scholar
  42. Karp, R.M., and Papadimitriou, C.H. [1982]: On linear characterizations of combinatorial optimization problems. SIAM Journal on Computing 11 (1982), 620–632CrossRefzbMATHMathSciNetGoogle Scholar
  43. Klein, P.N. [2008]: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM Journal on Computing 37 (2008), 1926–1952CrossRefzbMATHMathSciNetGoogle Scholar
  44. Krentel, M.W. [1989]: Structure in locally optimal solutions. Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science (1989), 216–221Google Scholar
  45. Land, A.H., and Doig, A.G. [1960]: An automatic method of solving discrete programming problems. Econometrica 28 (1960), 497–520CrossRefzbMATHMathSciNetGoogle Scholar
  46. Lin, S., and Kernighan, B.W. [1973]: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21 (1973), 498–516CrossRefzbMATHMathSciNetGoogle Scholar
  47. Little, J.D.C., Murty, K.G., Sweeny, D.W., and Karel, C. [1963]: An algorithm for the traveling salesman problem. Operations Research 11 (1963), 972–989CrossRefzbMATHGoogle Scholar
  48. Michiels, W., Aarts, E., and Korst, J. [2007]: Theoretical Aspects of Local Search. Springer, Berlin 2007zbMATHGoogle Scholar
  49. Mitchell, J. [1999]: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing 28 (1999), 1298–1309CrossRefzbMATHMathSciNetGoogle Scholar
  50. Papadimitriou, C.H. [1977]: The Euclidean traveling salesman problem is NP-complete. Theoretical Computer Science 4 (1977), 237–244CrossRefzbMATHMathSciNetGoogle Scholar
  51. Papadimitriou, C.H. [1978]: The adjacency relation on the travelling salesman polytope is NP-complete. Mathematical Programming 14 (1978), 312–324CrossRefzbMATHMathSciNetGoogle Scholar
  52. Papadimitriou, C.H. [1992]: The complexity of the Lin-Kernighan heuristic for the traveling salesman problem. SIAM Journal on Computing 21 (1992), 450–465CrossRefzbMATHMathSciNetGoogle Scholar
  53. Papadimitriou, C.H., and Steiglitz, K. [1977]: On the complexity of local search for the traveling salesman problem. SIAM Journal on Computing 6 (1), 1977, 76–83CrossRefzbMATHMathSciNetGoogle Scholar
  54. Papadimitriou, C.H., and Steiglitz, K. [1978]: Some examples of difficult traveling salesman problems. Operations Research 26 (1978), 434–443CrossRefzbMATHMathSciNetGoogle Scholar
  55. Papadimitriou, C.H., and Vempala, S. [2006]: On the approximability of the traveling salesman problem. Combinatorica 26 (2006), 101–120CrossRefzbMATHMathSciNetGoogle Scholar
  56. Papadimitriou, C.H., and Yannakakis, M. [1993]: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18 (1993), 1–12CrossRefzbMATHMathSciNetGoogle Scholar
  57. Rao, S.B., and Smith, W.D. [1998]: Approximating geometric graphs via “spanners” and “banyans”. Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998), 540–550Google Scholar
  58. Rosenkrantz, D.J. Stearns, R.E., and Lewis, P.M. [1977]: An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing 6 (1977), 563–581CrossRefzbMATHMathSciNetGoogle Scholar
  59. Sahni, S., and Gonzalez, T. [1976]: P-complete approximation problems. Journal of the ACM 23 (1976), 555–565CrossRefzbMATHMathSciNetGoogle Scholar
  60. Shmoys, D.B., and Williamson, D.P. [1990]: Analyzing the Held-Karp TSP bound: a monotonicity property with application. Information Processing Letters 35 (1990), 281–285CrossRefzbMATHMathSciNetGoogle Scholar
  61. Triesch, E., Nolles, W., and Vygen, J. [1994]: Die Einsatzplanung von Zementmischern und ein Traveling Salesman Problem In: Operations Research; Reflexionen aus Theorie und Praxis (B. Werners, R. Gabriel, eds.), Springer, Berlin 1994 [in German]Google Scholar
  62. Woeginger, G.J. [2002]: Exact algorithms for NP-hard problems. OPTIMA 68 (2002), 2–8MathSciNetGoogle Scholar
  63. Wolsey, L.A. [1980]: Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study 13 (1980), 121–134zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations