Advertisement

Weighted Matching

  • Bernhard Korte
  • Jens Vygen
Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

Nonbipartite weighted matching appears to be one of the “hardest” combinatorial optimization problems that can be solved in polynomial time. We shall extend EDMONDS’ CARDINALITY MATCHING ALGORITHM to the weighted case and shall again obtain an O.(n3)-implementation.

Keywords

Bipartite Graph Perfect Match Dual Solution Incidence Vector Maximum Weight Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerards, A.M.H. [1995]: Matching. In: Handbooks in Operations Research and Management Science; Volume 7: Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995, pp. 135–224Google Scholar
  2. Lawler, E.L. [1976]: Combinatorial Optimization; Networks and Matroids. Holt, Rinehart and Winston, New York 1976, Chapters 5 and 6Google Scholar
  3. Papadimitriou, C.H., and Steiglitz, K. [1982]: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, Englewood Cliffs 1982, Chapter 11Google Scholar
  4. Pulleyblank, W.R. [1995]: Matchings and extensions. In: Handbook of Combinatorics; Vol. 1 (R.L. Graham, M. Grötschel, L. Lovász, eds.), Elsevier, Amsterdam 1995Google Scholar
  5. Balinski, M.L. [1972]: Establishing the matching polytope. Journal of Combinatorial Theory 13 (1972), 1–13CrossRefzbMATHMathSciNetGoogle Scholar
  6. Ball, M.O., and Derigs, U. [1983]: An analysis of alternative strategies for implementing matching algorithms. Networks 13 (1983), 517–549CrossRefzbMATHMathSciNetGoogle Scholar
  7. Birkhoff, G. [1946]: Tres observaciones sobre el algebra lineal. Revista Universidad Nacional de Tucumán, Series A 5 (1946), 147–151zbMATHMathSciNetGoogle Scholar
  8. Burkard, R., Dell’Amico, M., and Martello, S. [2009]: Assignment Problems. SIAM, Philadelphia 2009CrossRefzbMATHGoogle Scholar
  9. Cook, W., and Rohe, A. [1999]: Computing minimum-weight perfect matchings. INFORMS Journal of Computing 11 (1999), 138–148CrossRefzbMATHMathSciNetGoogle Scholar
  10. Cunningham, W.H., and Marsh, A.B. [1978]: A primal algorithm for optimum matching. Mathematical Programming Study 8 (1978), 50–72MathSciNetGoogle Scholar
  11. Edmonds, J. [1965]: Maximum matching and a polyhedron with (0,1) vertices. Journal of Research of the National Bureau of Standards B 69 (1965), 125–130zbMATHMathSciNetGoogle Scholar
  12. Egerváry, E. [1931]: Matrixok kombinatorikus tulajdonságairol. Matematikai és Fizikai Lapok 38 (1931), 16–28 [in Hungarian]Google Scholar
  13. Gabow, H.N. [1973]: Implementation of algorithms for maximum matching on non-bipartite graphs. Ph.D. Thesis, Stanford University, Dept. of Computer Science, 1973Google Scholar
  14. Gabow, H.N. [1976]: An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. Journal of the ACM 23 (1976), 221–234CrossRefzbMATHMathSciNetGoogle Scholar
  15. Gabow, H.N. [1990]: Data structures for weighted matching and nearest common ancestors with linking. Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (1990), 434–443Google Scholar
  16. Grötschel, M., and Pulleyblank, W.R. [1981]: Weakly bipartite graphs and the max-cut problem. Operations Research Letters 1 (1981), 23–27CrossRefzbMATHMathSciNetGoogle Scholar
  17. Kolmogorov, V. [2009]: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1 (2009), 43–67CrossRefzbMATHMathSciNetGoogle Scholar
  18. Kuhn, H.W. [1955]: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2 (1955), 83–97CrossRefMathSciNetGoogle Scholar
  19. Lipton, R.J., and Tarjan, R.E. [1979]: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36 (1979), 177–189CrossRefzbMATHMathSciNetGoogle Scholar
  20. Lipton, R.J., and Tarjan, R.E. [1980]: Applications of a planar separator theorem. SIAM Journal on Computing 9 (1980), 615–627CrossRefzbMATHMathSciNetGoogle Scholar
  21. Lovász, L. [1979]: Graph theory and integer programming. In: Discrete Optimization I; Annals of Discrete Mathematics 4 (P.L. Hammer, E.L. Johnson, B.H. Korte, eds.), North-Holland, Amsterdam 1979, pp. 141–158Google Scholar
  22. Mehlhorn, K., and Schäfer, G. [2000]: Implementation of O(nmlogn) weighted matchings in general graphs: the power of data structures. In: Algorithm Engineering; WAE-2000; LNCS 1982 (S. Näher, D. Wagner, eds.), pp. 23–38; also electronically in The ACM Journal of Experimental Algorithmics 7 (2002)Google Scholar
  23. Monge, G. [1784]: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences 2 (1784), 666–704Google Scholar
  24. Munkres, J. [1957]: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5 (1957), 32–38CrossRefzbMATHMathSciNetGoogle Scholar
  25. Naddef, D., and Pulleyblank, W.R. [1981]: Matchings in regular graphs. Discrete Mathematics 34 (1981), 283–291CrossRefzbMATHMathSciNetGoogle Scholar
  26. von Neumann, J. [1953]: A certain zero-sum two-person game equivalent to the optimal assignment problem. In: Contributions to the Theory of Games II; Ann. of Math. Stud. 28 (H.W. Kuhn, ed.), Princeton University Press, Princeton 1953, pp. 5–12Google Scholar
  27. Schrijver, A. [1983a]: Short proofs on the matching polyhedron. Journal of Combinatorial Theory B 34 (1983), 104–108CrossRefzbMATHMathSciNetGoogle Scholar
  28. Schrijver, A. [1983b]: Min-max results in combinatorial optimization. In: Mathematical Programming; The State of the Art – Bonn 1982 (A. Bachem, M. Grötschel, B. Korte, eds.), Springer, Berlin 1983, pp. 439–500Google Scholar
  29. Varadarajan, K.R. [1998]: A divide-and-conquer algorithm for min-cost perfect matching in the plane. Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (1998), 320–329Google Scholar
  30. Weber, G.M. [1981]: Sensitivity analysis of optimal matchings. Networks 11 (1981), 41–56CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations