Improving the Validity of Conjoint Analysis by Additional Data Collection and Analysis Steps

  • Sebastian Selka
  • Daniel Baier
  • Michael Brusch
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Depending on the concrete application field and the data collection situation, conjoint experiments can end up with a low internal validity of the estimated part-worth functions. One of the known reasons for this is the (missing) temporal stability and structural reliability of the respondents’ part-worth functions, another reason is the (missing) attentiveness of the respondents in an uncontrolled data collection environment, e.g. during an online interview with many parallel web applications (e.g. electronic mail, newspapers or web site browsing). Here, additional data collection and analysis has been proposed as a solution. Examples of internal sources of data are response latencies, eye movements, or mouse movements, examples of external sources are sales and market data. The authors suggest alternative procedures for conjoint data collection that deal with these potential sources of internal validity. A comparison in an adaptive conjoint analysis setting shows, that the new procedures lead to a higher internal validity.


Conjoint Analysis Data Collection Phase Additional Data Collection High Internal Validity Adaptive Conjoint Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allenby GM, Arora N, Ginter JL (1995) Incorporating prior knowledge into the analysis of conjoint analysis. J Market Res 32(2):152–162CrossRefGoogle Scholar
  2. Baier D (1998) Conjointanalytische Lösungsansätze zur Parametrisierung des House of Quality: Methodik und Anwendungsbeispiel. In: VDI-Gesellschaft Systementwicklung und Projektgestaltung (ed) QFD - Produkte und Dienstleistungen marktgerecht gestalten, pp 73–88Google Scholar
  3. Brusch M, Baier D (2008) Conjoint analysis for complex services using clusterwise hierarchical Bayes procedures. Stud Classification 31:431–438Google Scholar
  4. Chen YC, Shang RA, Kao CY (2009) The effects of information overload on consumers’ subjective state towards buying decision in the internet shopping environment. Electron Commerce Res Appl 8(1):48–58CrossRefGoogle Scholar
  5. DeSarbo W, Fong D, Liechty J, Coupland J (2005) Evolutionary preference/utility functions: A dynamic perspective. Psychometrika 70(1):179–202MathSciNetCrossRefGoogle Scholar
  6. Ding M, Grewal R, Liechty J (2005) Incentive-aligned conjoint analysis. J Market Res 42(1):67–82CrossRefGoogle Scholar
  7. Green PE, Srinivasan V (1978) Conjoint analysis in consumer research: Issues and outlook. J Consum Res Interdiscipl Q 5(2):103–123Google Scholar
  8. Green PE, Krieger AM, Wind Y (2001) Thirty years of conjoint analysis: reflections and prospects. Interfaces 31(3):56–73CrossRefGoogle Scholar
  9. Hensel-Börner S, Sattler H (2006) Ein empirischer Validitätsvergleich zwischen der Customized Computerized Conjoint Analysis (ccc), der Adaptive Conjoint Analysis (aca) und Self-Explicated-Verfahren. Zeitschrift für Betriebswirtschaft 70:705–727Google Scholar
  10. Jacoby J (1984) Perspectives on information overload. J Consum Res 4:432–435CrossRefGoogle Scholar
  11. Jacoby J, Speller DE, Kohn CA (1974) Brand choice behavior as a function of information load. J Market Res 11(1):63–69CrossRefGoogle Scholar
  12. Johnson RM (1987) Adaptive conjoint analysis. In: Proceedings of the Sawtooth Software Conferece on Perceptual Mapping, Conjoint Analysis, and Computer Interviewing, Sawtooth Software, Sun Valley, pp 253–265Google Scholar
  13. Johnson RM, Orme BK (1996) How many questions should you ask in choice-based conjoint studies? Tech. rep., Sawtooth Software, SequimGoogle Scholar
  14. Louviere JJ (1984) Hierarchical information integration: a new method for the design and analyis of complex multiattribute judgement problems. Adv Consum Res 11(1):148–155Google Scholar
  15. Louviere JJ, Woodworth G (1983) Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data. J Market Res 20(4):350–367CrossRefGoogle Scholar
  16. McCullough J, Best R (1979) Conjoint measurement: Temporal stability and structural reliability. J Market Res 16(1):26–31CrossRefGoogle Scholar
  17. Netzer O, Toubia O, Bradlow E, Dahan E, Evgeniou T, Feinberg F, Feit E, Hui S, Johnson J, Liechty J, Orlin J, Rao V (2008) Beyond conjoint analysis: Advances in preference measurement. Market Lett 19(3):337–354CrossRefGoogle Scholar
  18. Pauwels K (2004) How dynamic consumer response, competitor response, company support, and company inertia shape long-term marketing effectiveness. Market Sci 23(4):596–610CrossRefGoogle Scholar
  19. Sethuraman R, Kerin RA, Cron WL (2005) A field study comparing online and offline data collection methods for identifying product attribute preferences using conjoint analysis. J Bus Res 58(5):602–610CrossRefGoogle Scholar
  20. Srinivasan V (1988) A conjunctive-compensatory approach to the self-explication of multiattributed preference. Decis Sci 19(2):295–395CrossRefGoogle Scholar
  21. Srinivasan V, Park CS (1997) Surprising robustness of the self-explicated approach to customer preference structure measurement. J Market Res 34(2):286–291CrossRefGoogle Scholar
  22. Voeth M (2000) Nutzenmessung in der Kaufverhaltensforschung: Die Hierarchische Individualisierte Limit Conjoint-Analyse (HILCA). Gabler, Wiesbaden, GermanyGoogle Scholar
  23. Voeth M, Hahn C (1998) Limit conjoint-analyse. Market ZFP 2(2):119–132Google Scholar
  24. Wildner R, Dietrich H, Hölscher A (2007) HILCA: A new conjoint procedure for an improved portrayal of purchase decisions on complex products. Yearbook Market Consum Res 5:5–20Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Chair of Marketing and Innovation Management, Institute of Business Administration and EconomicsBrandenburg University of Technology CottbusCottbusGermany

Personalised recommendations