The Recognition of Consonance Is not Impaired by Intonation Deviations: A Revised Theory

  • Jobst Peter Fricke
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


The recognition of musical intervals is investigated comparing neurobiological and theoretical models (Tramo et al., The Biological Foundations of Music, Annals of the New York Academy of Sciences, 930, pp. 92–116, 2001; Ebeling, Verschmelzung und neuronale Autokorrelation als Grundlage einer Konsonanztheorie, Lang, Peter, Frankfurt/Main, 2007). The actual analyses focus on pitch tolerances of consonance identification. The mechanisms are different in models and the neurobiological process (pulse width and time latency) that the listener tolerates the deviation of the exact ratio of frequencies in the recognition of consonance. The neurobiological process is characterized by the spontaneous neural activity which is described by a Poisson distribution. Event related activities may be displayed in interspike-interval (ISI) and peri-event-time-histograms (PETH). Consonant musical intervals are characterized by periodicity in all-order ISI-histograms. This result is explained by the frequency ratio of the interval of pitches. These ISI-histograms also display subharmonics which are explainable as artifacts because of methodical issues. In contrast, the peridocity indicates the frequency of the residue. In order to adapt the model to reality, the width of the statistical distribution of the neural impulses should be considered. The spike-analysis for the recognition of periodicity is investigated on the basis of the statistical distribution and compared with the statistical results of the listener’s assessment of muscial intervals. The experimental data were taken from a study dealing with the assessment of intervals in a musical context (Fricke, Classification: The Ubiquitous Challenge, pp. 585–592, Berlin, Springer, 2005).


Spike Train Basilar Membrane Integration Period Cochlear Duct Input Impulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Oliver Fricke for his statistical work, Christoph Reuter for his help preparing Figs. 1 and 2, and Michael Oehler for the English translation.


  1. Abeles M (1994) Firing rates and well-timed events in the cerebral cortex. In: Domany E, Hemmen J, Schulten K (eds) Models of neural networks II, Physics of neural networks. Springer, New York, pp 121–140Google Scholar
  2. Békésy Gv (1947) The variation of phase along the basilar membrane with sinusoidal vibrations. J Acoust Soc Am 19:452–460CrossRefGoogle Scholar
  3. Dudel J (1990) Erregungsübertragung von Zelle zu Zelle. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, Springer, Berlin, pp 45–63Google Scholar
  4. Ebeling M (2007) Verschmelzung und neuronale autokorrelation als grundlage einer konsonanztheorie. Lang, Peter, Frankfurt/Main.Google Scholar
  5. Eldredge DH (1974) Inner ear-cochlear mechanics and cochlear potentials. In: Handbook of sensory physiology, vol V/1. Springer, Berlin, pp 549–584Google Scholar
  6. Fricke JP (1988) Klangbreite und Tonempfindung. Bedingungen kategorialer Wahrnehmung aufgrund experimenteller Untersuchung der Intonation. In: Musikpsychologie. Jahrbuch der Deutschen Gesellschaft für Musikpsychologie, Wilhelmshaven, pp 67–87Google Scholar
  7. Fricke JP (2005) Classification of perceived musical intervals. In: Weihs C, Gaul W (eds) Classification - The ubiquitous challenge. Springer, Berlin, pp 585–592CrossRefGoogle Scholar
  8. Kandel E (2006) Auf der Suche nach dem Gedächtnis. Siedler, MünchenGoogle Scholar
  9. Keidel WD (1989) Biokybernetik des Menschen. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  10. Koch C (1999) Biophysics of computation. Information processing in single neurons. Oxford University Press (Computational Neuroscience), New YorkGoogle Scholar
  11. Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat II. Topographical organization. J Neurophysiol 60(6):1823–1840Google Scholar
  12. Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134CrossRefGoogle Scholar
  13. Singer W (2002) Der Beobachter im Gehirn. Suhrkamp, Frankfurt/MainGoogle Scholar
  14. Tramo MJ, Cariani PA, Delgutte B, Braida LD (2001) Neurobiological foundations for the theory of harmony in western tonal music. In: The Biological Foundations of Music, Annals of the New York Academy of Sciences, 930, pp 92–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Systematic Musicology, Institute for MusicologyUniversity of CologneCologneGermany

Personalised recommendations