Skip to main content

Impedance Models for Structural Health Monitoring Using Piezo-Impedance Transducers

  • Chapter
Book cover Smart Materials in Structural Health Monitoring, Control and Biomechanics

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

This chapter reviews the sequential evolution of PZT-structure interaction models starting from 1D models, followed by 2D and 3D PZT-structure electromechanical formulations. In all these models, impedance is defined as 1D, 2D and 3D equations depending on the nature of host structure to be monitored, size of PZT patch and adhesive layer. In addition, direct use of coupled field element in conjunction with finite element method (FEM) is covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agilent Technologies (2003). Test and Measurement Catalogue, USA.

    Google Scholar 

  • Annamdas, V.G.M. and Soh, C.K. (2006a). “Embedded Piezoelectric Ceramic Transducers in Sandwiched Beams”, Smart Materials and Structures, 15(2): 538–549.

    Article  Google Scholar 

  • Annamdas, V.G.M. and Soh, C.K. (2006b). “Multiple PZT-Host Structure Interaction Model”, Proceedings of SPIE, 6174, 61743G (paper No. 6174-124)

    Google Scholar 

  • Annamdas, V.G.M. and Soh, C.K. (2007). “Three Dimensional Electromechanical Impedance Model I: Formulation of Directional Sum Impedance”, Journal of Aerospace Engineering, 20(1): 53–62.

    Article  Google Scholar 

  • ANSYS Inc. (2004). ANSYS Reference Manual Release 8.1, Canonsburg, PA, USA.

    Google Scholar 

  • Bathe, K.J. (1996). Finite Element Procedures, New Jersey: Prentice Hall, USA

    Google Scholar 

  • Bhalla, S. (2001). “Smart System Based Automated Health Monitoring of Structures”, M. Eng. Thesis, Nanyang Technological University, Singapore.

    Google Scholar 

  • Bhalla, S. (2004). “Mechanical Impedance Approach for Structural Identification, Health Monitoring and Non-destructive Evaluation Using Piezo-impedance Transducers”, Ph.D. Thesis, Nanyang Technological University, Singapore.

    Google Scholar 

  • Bhalla, S. and Soh, C.K. (2004a). “Structural Health Monitoring by Piezoimpedance transducers: Modeling”, Journal of Aerospace Engineering, 17(4): 154–165.

    Article  Google Scholar 

  • Bhalla, S. and Soh, C.K. (2004b). “Electromechanical Impedance Modeling for Adhesively Bonded Piezo-transducers”, Journal of Intelligent Material Systems and Structures, 15(12): 955–972.

    Article  Google Scholar 

  • Cheng, C.C. and Lin, C.C. (2005). “An impedance approach for vibration response synthesis using multiple PZT actuators”, Sensors and Actuators A, 118: 116–126.

    Google Scholar 

  • Crawley, E.F. and de Luis, J. (1987). “Use of Piezoelectric Actuators as Elements of Intelligent Structures”, AIAA Journal, 25(10): 1373–1385.

    Article  Google Scholar 

  • Fairweather, J.A. (1998). “Designing with Active Materials: An Impedance Based Approach”, Ph.D. Thesis, Rensselaer Polytechnic Institute, New York.

    Google Scholar 

  • Giurgiutiu, V. and Zagrai, A.N. (2000). “Characterization of Piezoelectric Wafer Active Sensors”, Journal of Intelligent Material Systems and Structures, 11: 959–976.

    Google Scholar 

  • Giurgiutiu, V. and Zagrai, A.N. (2002). “Embedded Self-Sensing Piezoelectric Active Sensors for On-Line Structural Identification”, Journal of Vibration and Acoustics, 124: 116–125.

    Article  Google Scholar 

  • Hewlett Packard (1996). HP LF 4192A Impedance Analyzer, Operation Manual, Japan.

    Google Scholar 

  • Lalande, F. (1995). “Modelling of the Induced Strain Actuation of Shell Structures”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, V.A.

    Google Scholar 

  • Liang, C., Sun, F.P. and Rogers, C.A. (1993). “An Impedance Method for Dynamic Analysis of Active Material Systems”, Proceedings of AIAA/ASME/ ASCE/Material Systems, La-Jolla, California, 3587–3599.

    Google Scholar 

  • Liang, C., Sun, F.P. and Rogers, C.A. (1994). “Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer”, Journal of Intelligent Material Systems and Structures, 5(1): 12–20.

    Article  Google Scholar 

  • Lim, Y.Y. (2004). “Structural Identification by Smart Materials”, Final year report, Nanyang Technological University, Singapore.

    Google Scholar 

  • Liu, W. and Giurgiutiu, V. (2007). “Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Field Elements”, Proceedings of SPIE, 6529: 6529–25.

    Google Scholar 

  • Madhav, A.V.G. and Soh, C.K. (2007a). “Uniplexing and Multiplexing of PZT Transducer for Structural Health Monitoring”, Journal of Intelligent Material Systems and Structures, 19(4): 457–467.

    Article  Google Scholar 

  • Madhav, A.V.G. and Soh, C.K. (2007b). “An Electromechanical Impedance Model of a Piezoceramic Transducer-Structure in the Presence of Thick Adhesive Bonding”, Smart Materials and Structures, 16: 673–686.

    Article  Google Scholar 

  • Makkonen, T., Holappa, A., Ella, J. and Salomaa, M.M. (2001). “Finite Element Simulations of Thin-Film Composite BAW Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(5): 1241–1258.

    Article  Google Scholar 

  • Ong, C.W. (2003). “Dynamic Identification and Health Monitoring of Structural Systems with the Electromechanical Impedance Method”, M. Eng. Thesis, Nanyang Technological University, Singapore.

    Google Scholar 

  • Ong, C.W., Yang, Y., Wong, Y.T., Bhalla, S., Lu, Y. and Soh, C.K. (2002). “The Effects of Adhesive on the Electromechanical Response of a Piezoceramic Transducer Coupled Smart System”, Proceedings of SPIE, 5062, 241–247.

    Google Scholar 

  • PI Ceramic (2006). Product Information Catalogue, Lindenstrabe, Germany, http://www.piceramic.de.

    Google Scholar 

  • Raja, S., Sreedeep, R. and Prathap, G. (2004). “Bending behavior of Hybrid-Piezoelectric Sandwich Beams”, Journal of Intelligent Material Systems and Structures, 15(4): 611–619.

    Article  Google Scholar 

  • RS Components (2003). Northants, UK, http://www.rs-components.com.

    Google Scholar 

  • Sensor Technology Limited (1995). Product Catalogue, Collingwood.

    Google Scholar 

  • Sirohi, J. and Chopra, I. (2000). “Fundamental Understanding of Piezoelectric Strain Sensors”, Journal of Intelligent Material Systems and Structures, 11(4): 246–257.

    Google Scholar 

  • Xu, Y.G. and Liu, G.R. (2003). “A Modified Electro-mechanical Impedance Model of Piezoelectric Actuator-Sensors for Debonding Detection of Composite Patches”, Journal of Intelligent Material Systems and Structures, 13(6): 389–396.

    Article  Google Scholar 

  • Yang, Y.W., Xu, J.F. and Soh, C.K. (2005). “Generic Impedance-Based Model for Structure-Piezoceramic Interacting System”, Journal of Aerospace Engineering, 18(2): 93–101.

    Article  Google Scholar 

  • Yang, Y.W., Lim, Y.Y. and Soh, C.K. (2008). “Practical Issues Related to the Application of the Electromechanical Impedance Technique in the Structural Health Monitoring of Civil Structures: I. Experiment”, Smart Materials and Structures, 17(3): 035008.

    Article  Google Scholar 

  • Zagrai, A.N. and Giurgiutiu, V. (2001). “Electro-Mechanical Impedance Method for Crack Detection in Thin Plates”, Journal of Intelligent Material Systems and Structures, 12(12): 709–718.

    Article  Google Scholar 

  • Zhou, S.W., Liang, C. and Rogers, C.A. (1995). “Integration and Design of Piezoceramic Elements in Intelligent Structures”, Journal of Intelligent Material Systems and Structures, 6(6): 733–743.

    Article  Google Scholar 

  • Zhou, S.W., Liang, C. and Rogers, C.A. (1996). “An Impedance-Based System Modeling Approach for Induced Strain Actuator-Driven Structures”, Journal of Vibrations and Acoustics, 118(3): 323–331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhalla, S., Yang, Y.W., Annamdas, V.G.M., Lim, Y.Y., Soh, C.K. (2012). Impedance Models for Structural Health Monitoring Using Piezo-Impedance Transducers. In: Smart Materials in Structural Health Monitoring, Control and Biomechanics. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24463-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24463-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24462-9

  • Online ISBN: 978-3-642-24463-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics