Abstract

This chapter focuses on the theoretical and the practical aspects of the EMI technique for SHM/NDE. In principle, this technique is similar to the conventional global dynamic techniques described in Chapter 1. The main difference is the frequency range employed: the EMI technique typically employs 30 to 400 kHz whereas the global dynamic techniques employ less than 100 Hz.

Keywords

Reinforce Concrete Root Mean Square Deviation Damage Detection Structural Health Monitoring Mechanical Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M., Park, G. and Inman, D.J. (2002). “Impedance-Based Monitoring of Stress in Thin Structural Members”, Proceeding of 11 th International Conference on Adaptive Structures and Technologies, October 23–26, Nagoya, Japan, 285–292.Google Scholar
  2. Annamdas, V.G.M. and Soh, C.K. (2007). “Three Dimensional Electromechanical Impedance Model I: Formulation of Directional Sum Impedance”, Journal of Aerospace Engineering, 20(1): 53–62.CrossRefGoogle Scholar
  3. Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998). “Qualitative Impedance-Based Health Monitoring of Civil Infrastructures”, Smart Materials and Structures, 7(5): 599–605.CrossRefGoogle Scholar
  4. Bhalla, S. (2001). “Smart System Based Automated Health Monitoring of Structures”, M.Eng. Thesis, Nanyang Technological University, Singapore.Google Scholar
  5. Bhalla, S. and Soh, C.K. (2004a). “Structural Health Monitoring by Piezo-Impedance Transducers: Modeling”, Journal of Aerospace Engineering, 17(4): 154–165.CrossRefGoogle Scholar
  6. Bhalla, S. and Soh, C.K. (2004b). “Structural Health Monitoring by Piezo-Impedance Transducers: Applications”, Journal of Aerospace Engineering, 17(4): 166–175.CrossRefGoogle Scholar
  7. Bhalla, S. and Soh, C.K. (2004c). “Impedance Based Modeling for Adhesively Bonded Piezo-Transducers”, Journal of Intelligent Material Systems and Structures, 15(12): 955–972.CrossRefGoogle Scholar
  8. Bhalla, S., Gupta, A., Bansal, S. and Garg, T. (2009). “Ultra Low Cost Adaptations of Electro-mechanical Impedance Technique for Structural Health Monitoring”, Journal of Intelligent Material Systems and Structures, 20(8): 991–999.CrossRefGoogle Scholar
  9. Boller, C. (2002). “Structural Health Management of Ageing Aircraft and Other Infrastructure”, Monograph on Structural Health Monitoring, Institute of Smart Structures and Systems (ISSS), 1–59.Google Scholar
  10. Dosch, J.J., Inman, D.J. and Garcia, E. (1992). “A Self Sensing Piezoelectric Actuator for Collocated Control”, Journal of Intelligent Material Systems and Structures, 3: 166–185.CrossRefGoogle Scholar
  11. Esteban, J. (1996). “Analysis of the Sensing Region of a PZT Actuator-Sensor”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  12. Giurgiutiu, V. and Rogers, C.A. (1997). “Electromechanical (E/M) Impedance Method for Structural Health Monitoring and Non-Destructive Evaluation”, Proceedings of International Workshop on Structural Health Monitoring, Stanford University, California, September 18–20, Technomic Publishing Co., 433–444.Google Scholar
  13. Giurgiutiu, V. and Rogers, C.A. (1998). “Recent Advancements in the Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and NDE”, Proceedings of SPIE, 3329: 536–547.CrossRefGoogle Scholar
  14. Giurgiutiu, V., Reynolds, A. and Rogers, C.A. (1999). “Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints”, Journal of Intelligent Material Systems and Structures, 10(10): 802–812.Google Scholar
  15. Giurgiutiu, V. and Zagrai, A.N. (2002). “Embedded Self-Sensing Piezoelectric Active Sensors for On-Line Structural Identification”, Journal of Vibration and Acoustics, 124: 116–125.CrossRefGoogle Scholar
  16. Giurgiutiu, V., Zagrai, A.N. and Bao, J.J. (2002). “Embedded Active Sensors for In-Situ Structural Health Monitoring of Thin-Wall Structures”, Journal of Pressure Vessel Technology, 124: 293–302.CrossRefGoogle Scholar
  17. Hewlett Packard (1996), “HP LF 4192A Impedance Analyzer”, Operation Manual, Japan.Google Scholar
  18. Hu, Y.H. and Yang, Y.W. (2007). “Wave Propagation Modeling of PZT Sensing Region for Structural Health Monitoring”, Smart Materials and Structures, 16(3): 706–716.CrossRefGoogle Scholar
  19. Inman, D.J., Ahmadihan, M. and Claus, R.O. (2001). “Simultaneous Active Damping and Health Monitoring of Aircraft Panels”, Journal of Intelligent Material Systems and Structures, 12(11): 775–783.CrossRefGoogle Scholar
  20. Kawiecki, G. (2001). “Modal damping Measurement for Damage Detection”, Smart Materials and Structures, 10: 466–472.CrossRefGoogle Scholar
  21. Liang, C., Sun, F.P. and Rogers, C.A. (1994). “Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer”, Journal of Intelligent Material Systems and Structures, 5: 12–20.CrossRefGoogle Scholar
  22. Lopes, V., Park, G., Cudney, H.H. and Inman, D.J. (1999). “Smart Structures Health Monitoring Using Artificial Neural Network”, Proceedings of 2 nd International Workshop on Structural Health Monitoring, Stanford University, California, September 8–10, 976–985.Google Scholar
  23. Naidu, A.S.K. (2004). “Structural Damage Identification with Admittance Signatures of Smart PZT Transducers”, Ph.D. Thesis, Nanyang Technological University, Singapore.Google Scholar
  24. Overly, T.G., Park, G., Farinholt, K.M. and Farrar, C.R. (2008). “Development of an Extremely Compact Impedance-based Wireless Sensing Device”, Smart Materials and Structures, 17(6): 065011.CrossRefGoogle Scholar
  25. Pardo De Vera, C. and Guemes, J.A. (1997). “Embedded Self-Sensing Piezoelectric for Damage Detection”, Proceedings of International Workshop on Structural Health Monitoring, Stanford University, California, September 18–20, 445–455.Google Scholar
  26. Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999). “Impedance-Based Structural Health Monitoring for Temperature Varying Applications”, JSME International Journal, 42(2): 249–258.Google Scholar
  27. Park, G. (2000). “Assessing Structural Integrity Using Mechatronic Impedance Transducers with Applications in Extreme Environments”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  28. Park, G., Cudney, H.H. and Inman, D.J. (2000a). “Impedance-Based Health Monitoring of Civil Structural Components”, Journal of Infrastructure Systems, 6(4): 153–160.CrossRefGoogle Scholar
  29. Park, G., Cudney, H.H. and Inman, D.J. (2000b). “An Integrated Health Monitoring Technique Using Structural Impedance Sensors”, Journal of Intelligent Material Systems and Structures, 11: 448–455.Google Scholar
  30. Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003). “Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward”, The Shock and Vibration Digest, 35(5): 451–463.CrossRefGoogle Scholar
  31. Peairs, D.M., Park, G. and Inman, D.J. (2004). “Improving Accessibility of the Impedance-Based Structural Health Monitoring Method”, Journal of Intelligent Material Systems and Structures, 15(2): 129–139.CrossRefGoogle Scholar
  32. PI Ceramic (2003). Product Information Catalogue, Lindenstrabe, Germany, http://www.piceramic.de.Google Scholar
  33. Raju, V. (1998). “Implementing Impedance-Based Health Monitoring Technique”, Master’s Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  34. Saffi, M. and Sayyah, T. (2001). “Health Monitoring of Concrete Structures Strengthened with Advanced Composite Materials Using Piezoelectric Transducers”, Composites Part B: Engineering, 32(4): 333–342.CrossRefGoogle Scholar
  35. Samman, M.M. and Biswas, M. (1994a). “Vibration Testing for Non-Destructive Evaluation of Bridges. I: Theory”, Journal of Structural Engineering, 120(1): 269–289.CrossRefGoogle Scholar
  36. Samman, M.M. and Biswas, M. (1994b). “Vibration Testing for Non-Destructive Evaluation of Bridges. II: Results”, Journal of Structural Engineering, 120(1): 290–306.CrossRefGoogle Scholar
  37. Soh, C.K., Tseng, K.K.H., Bhalla, S. and Gupta, A. (2000). “Performance of Smart Piezoceramic Patches in Health Monitoring of a RC Bridge”, Smart Materials and Structures, 9(4): 533–542.CrossRefGoogle Scholar
  38. Soh, C.K. and Bhalla, S. (2005). “Calibration of Piezo-Impedance Transducers for Strength Prediction and Damage Assessment of Concrete”, Smart Materials and Structures, 14(4): 671–684.CrossRefGoogle Scholar
  39. Sun, F.P., Chaudhry, Z., Rogers, C.A., Majmundar, M. and Liang, C. (1995). “Automated Real-Time Structure Health Monitoring via Signature Pattern Recognition”, Proceedings of SPIE, 2443: 236–247.CrossRefGoogle Scholar
  40. Winston, H.A., Sun, F. and Annigeri, B.S. (2001). “Structural Health Monitoring with Piezoelectric Active Sensors”, Journal of Engineering for Gas Turbines and Power, 123(2): 353–358.CrossRefGoogle Scholar
  41. Xu, J.F., Yang, Y.W. and Soh, C.K. (2004). “Electromechanical Impedance-Based Structural Health Monitoring with Evolutionary Programming”, Journal of Aerospace Engineering, 17(4): 182–193.CrossRefGoogle Scholar
  42. Yang, Y.W., Bhalla, S., Wang, C., Soh, C.K. and Zhao, J. (2007). “Monitoring of Rocks Using Smart Sensors”, Tunnelling and Underground Space Technology, 22(2): 206–222.CrossRefGoogle Scholar
  43. Zhou, S.W., Liang, C. and Rogers, C.A. (1996). “An Impedance-Based System Modeling Approach for Induced Strain Actuator-Driven Structures”, Journal of Vibrations and Acoustics, 118(3): 323–332.CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Bhalla
    • 1
  • C. K. Soh
  1. 1.Department of Civil EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations