Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 2379 Accesses

Abstract

Compared to piezoelectric materials and fiber optics, ionic polymer-metal composite (IPMC) is a relatively new smart material. IPMC, also known as ionic conducting polymer gel film (ICPF), was initially found in fuel cell research. In the early 1990’s, Sadeghipour et al. (1992) found the sensing ability of ionic polymer. Later, the converse process of charge storage mechanism associated with fuel cell, i.e., actuation capacity, was found by Oguro et al. (1992). Ever since then, ionic polymer has been attracting more and more attention from researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akle, B.J. and Leo, D.J. (2005). “Correlation of capacitance and actuation in ionomeric polymer transducers”, Journal of Materials Science, 40: 3715–3724.

    Article  Google Scholar 

  • Akle, B.J., Bennett, M.D. and Leo, D.J. (2006). “High-strain ionomeric-ionic liquid electroactive actuators”, Sensors and Actuators A: Physical, 126: 173–181.

    Article  Google Scholar 

  • Asaka, K. and Oguro, K. (2000a). “Bending of polyelectrolyte membrane platinum composites by electric stimuli II:response kinetics”, Journal of Electroanalytical Chemistry, 480(1–2): 186–198.

    Article  Google Scholar 

  • Asaka, K. and Oguro, K. (2000b). “bending of polyelectrolyte membrane platinum composites by electric stimuli III: self-oscillation”, Electrochimica Acta, 45: 4517–4523.

    Article  Google Scholar 

  • Asaka, K., Oguro, K., Nishimura, Y., Mizuhata, M. and Takenaka, H. (1995). “Bending of polyelectrolyte membrane platinum composites by electric stimuli I: response characteristics to various waveforms”, Polymer Journal, 27: 436–440.

    Article  Google Scholar 

  • Bar-Cohen, Y. (Editor) (2004). Electroactive polymer (EAP) Actuators as Artificial Muscles, Reality, Potential, and Challenges, 2nd Edition, Washington: SPIE Press.

    Google Scholar 

  • Bar-Cohen, Y. (Editor) (2006). Biomimetics: Biologically Inspired Technologies, New York: CRC/Taylor & Francis.

    Google Scholar 

  • Bennett, M.D. and Leo, D.J. (2004). “Ionic liquids as stable solvents for ionic polymer transducers”, Sensors and Actuators A: Physical, 115:79–90.

    Article  Google Scholar 

  • Bennett, M.D., Leo, D.J., Wilkes, G.L., Beyer, F.L. and Pechar, T.W. (2006). “A model of charge transport and electromechanical transduction in ionic liquidswollen nafion membranes”, Polymer, 47: 6782–6796.

    Article  Google Scholar 

  • Bonomo, C., Fortuna, L., Giannone, P. and Graziani, S. (2005). “A method to characterize the deformation of an IPMC sensing membrane”, Sensor and Actuators A Physical, 123–124: 146–154.

    Article  Google Scholar 

  • Bufalo, G.D., Placidi, L. and Porfiri, M. (2008). “A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites”, Smart Materials and Structures, 17: 045010.

    Article  Google Scholar 

  • Farinholt, K. and Leo, D.J. (2004). “Modeling of electromechanical charge sensing in ionic polymer transducers”, Mechanics of Materials, 36: 421–433.

    Article  Google Scholar 

  • Kim, K.J. and Shahinpoor, M. (2003). “Ionic polymer-metal composites: II. manufacturing techniques”, Smart Materials and Structures, 12: 65–79.

    Article  Google Scholar 

  • Matthews, J.L., Lada, E.K., Weiland, L.M., Smith, R.C. and Leo, D.J. (2006). “Monte Carlo simulation of a solvated ionic polymer with cluster morphology”, Smart Materials and Structures, 15: 187–199.

    Article  Google Scholar 

  • Nemat-Nasser, S. (2002). “Micromechanics of actuation of ionic polymer-metal composites”, Journal of Applied Physics, 92: 2899–2915.

    Article  Google Scholar 

  • Nemat-Nasser, S. and Li, J.Y. (2000). “Electromechanical response of ionic polymer-metal composites”, Journal of Applied Physics, 87: 3321–3331.

    Article  Google Scholar 

  • Nemat-Nasser, S. and Wu, Y. (2003). “Comparative experimental study of the ionic polymer-metal composites with different backbone ionomers and in various cation forms”, Journal of Applied Physics, 93: 5255–5267.

    Article  Google Scholar 

  • Nemat-Nasser, S. and Wu, Y. (2006). “Tailoring the actuation of ionic polymermetal composites”, Smart Materials and Structures, 15: 1–15.

    Article  Google Scholar 

  • Nemat-Nasser, S. and Zamani, S. (2006a). “Effect of solvents on the chemical and physical properties of ionic polymer-metalccomposites”, Journal of Applied Physics, 99: 104902.

    Article  Google Scholar 

  • Nemat-Nasser, S. and Zamani, S. (2006b). “Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents”, Journal of Applied Physics, 100: 064310.

    Article  Google Scholar 

  • Newbury, K.M. and Leo, D.J. (2002). “Electromechanical modeling and characterization of ionic polymer benders”, Journal of Intelligent Material Systems and Structures, 13: 51–60.

    Article  Google Scholar 

  • Newbury, K.M. and Leo, D.J. (2003a). “Linear electromechanical model of ionic polymer transducers-part I: model development”, Journal of Intelligent Material Systems and Structures, 14: 333–342.

    Article  Google Scholar 

  • Newbury, K.M. and Leo, D.J. (2003b). “Linear electromechanical model of ionic polymer transducers-part II: experimental validation”, Journal of Intelligent Material Systems and Structures, 14: 343–357.

    Article  Google Scholar 

  • Oguro, K., Kawami, Y. and Takenaka, H. (1992). “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage”, Trans. Journal of Micromachine Society, 5: 27–30.

    Google Scholar 

  • Paquette, J.W. and Kim, K.J. (2004). “Ionomeric electroactive polymer artificial muscle for naval applications”, IEEE Journal of Ocean Engineering, 29: 729–737.

    Article  Google Scholar 

  • Sadeghipour, K., Salomon, R. and Neogi, S. (1992). “Development of a novel electrochemically active membrane and’ smart’ material based vibration sensor/damper”, Smart Materials and Structures, 1: 172–179.

    Article  Google Scholar 

  • Shahinpoor, M. (1992). “Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymer gel muscles”, Smart Materials and Structures, 1: 91–94.

    Article  Google Scholar 

  • Shahinpoor, M. and Kim, K.J. (2001). “Ionic polymer-metal composites: I. fundamentals”, Smart Materials and Structures, 10:819–833.

    Article  Google Scholar 

  • Shahinpoor, M. and Kim, K.J. (2002). “Mass transfer induced hydraulic actuation in ionic polymer-metal composites”, Journal of Intelligent Material Systems and Structures, 13: 369–376.

    Article  Google Scholar 

  • Shahinpoor, M. and Kim, K.J. (2004). “Ionic polymer-metal composites: III. modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles”, Smart Materials and Structures, 13: 1362–1388.

    Article  Google Scholar 

  • Shahinpoor, M. and Kim, K.J. (2005). “Ionic polymer-metal composites: IV. industrial and medical applications”, Smart Materials and Structures, 14: 197–214.

    Article  Google Scholar 

  • Tamagawa, H., Yagasaki, K. and Nogata, F. (2002). “Mechanical characteristics of ionic polymer-metal composite in the process of self-bending”, Journal of Applied Physics, 92: 7614–7618.

    Article  Google Scholar 

  • Toi, Y. and Kang, S.S. (2005). “Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer-metal composite beams”, Computers and Structures, 83: 2573–2583.

    Article  Google Scholar 

  • Weiland, L.M. and Leo, D.J. (2005a). “Computational analysis of ionic polymer cluster energetics”, Journal of Applied Physics, 97: 013541.

    Article  Google Scholar 

  • Weiland, L.M. and Leo, D.J. (2005b). “Ionic polymer cluster energetics: computational analysis of pedant chain stiffness and charge imbalance”, Journal of Applied Physics, 97: 123530.

    Article  Google Scholar 

  • Yagasaki, K. and Tamagawa, H. (2004). “Experimental estimate of viscoelastic properties for ionic polymer-metal composites”, Physical Review E 70: 052801.

    Article  Google Scholar 

  • Yamakita, M., Kamamichi, N., Kaneda, Y., Asaka, K. and Luo, Z.W. (2004). “Development of an artificial muscle linear actuator using ionic polymer-metal composites”, Advanced Robotics, 18: 383–399.

    Article  Google Scholar 

  • Yang, Y.W. and Zhang, L. (2008). “Modeling of ionic polymer-metal composite ring”, Smart Materials and Structures, 17: 015023.

    Article  Google Scholar 

  • Zhang, L. and Yang, Y.W. (2007). “Modeling of ionic polymer-,metal composite beam on human tissues”, Smart Materials and Structures, 16: S197–S207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, Y.W., Zhang, L., Soh, C.K. (2012). Ionic Polymer-Metal Composite and its Actuation Characteristics. In: Smart Materials in Structural Health Monitoring, Control and Biomechanics. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24463-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24463-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24462-9

  • Online ISBN: 978-3-642-24463-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics