Advertisement

Linkless Normal Form for \(\mathcal{ALC}\) Concepts and TBoxes

  • Claudia Schon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7006)

Abstract

In this paper we introduce a normal form for \(\mathcal{ALC}\) concepts and TBoxes called linkless normal form. We investigate properties of concepts given in this normal form such as an efficient satisfiability test and the calculation of uniform interpolants. We further show a way to approximate a TBox by a concept in linkless normal form, which allows us to check certain subsumptions efficiently. This makes the linkless normal form interesting from the viewpoint of knowledge compilation. Furthermore, we show how to use the approximation of a TBox in linkless normal form to efficiently construct an approximation of a uniform interpolant of a TBox w.r.t. a given signature.

Keywords

Normal Form Propositional Logic Description Logic Disjunctive Normal Form Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Dean, T. (ed.) IJCAI, pp. 96–103. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. 2.
    Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) [3], pp. 43–95Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Balsiger, P., Heuerding, A.: Comparison of theorem provers for modal logics - introduction and summary. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 25–26. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bienvenu, M.: Prime implicates and prime implicants in modal logic. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI 2007), pp. 397–384 (2007)Google Scholar
  6. 6.
    Darwiche, A.: Decomposable negation normal form. Journal of the ACM, 48(4) (2001)Google Scholar
  7. 7.
    Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research 17, 229–264 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Furbach, U., Günther, H., Obermaier, C.: A knowledge compilation technique for ALC TBoxes. In: Lane, C., Guesgen, H. (eds.) FLAIRS Conference. AAAI Press, Menlo Park (2009)Google Scholar
  9. 9.
    Furbach, U., Obermaier, C.: Precompiling ALC Tboxes and query answering. In: Proceedings of the 4th Workshop on Contexts and Ontologies (2008)Google Scholar
  10. 10.
    Horrocks, I.: Implementation and optimization techniques. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) [3], pp. 306–346Google Scholar
  11. 11.
    Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-scale description logic terminologies. In: Boutilier, C. (ed.) IJCAI, pp. 830–835 (2009)Google Scholar
  12. 12.
    Kracht, M.: Tools and techniques in Modal Logic. Elsevier Science, Amsterdam (1999)zbMATHGoogle Scholar
  13. 13.
    Murray, N., Rosenthal, E.: Tableaux, path dissolution, and decomposable negation normal form for knowledge compilation. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 165–180. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Murray, N., Rosenthal, E.: Dissolution: Making paths vanish. Journal of the ACM 40(3), 504–535 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schon, C.: Linkless normal form for ALC concepts. Reports of the Faculty of Informatics 12/2010, Universität Koblenz-Landau (2010), http://www.uni-koblenz.de/FB4/Publications/Reports
  16. 16.
    Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM 43(2), 193–224 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    ten Cate, B., Conradie, W., Marx, M., Venema, Y.: Definitorially complete description logics. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Proc. of KR 2006, pp. 79–89. AAAI Press, Menlo Park (2006)Google Scholar
  18. 18.
    Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Wang, K., Wang, Z., Topor, R., Pan, J., Antoniou, G.: Concept and role forgetting in ALC ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 666–681. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claudia Schon
    • 1
  1. 1.University of Koblenz-LandauGermany

Personalised recommendations