TGA-Based Controllers for Flexible Plan Execution

  • Andrea Orlandini
  • Alberto Finzi
  • Amedeo Cesta
  • Simone Fratini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7006)


Plans synthesized by Temporal Planning and Scheduling systems may be temporally flexible hence they identify an envelope of possible solutions. Such flexibility can be exploited by an executive systems for robust on-line execution. Recent works have addressed aspects of plan execution using a quite general approach grounded on formal modeling and formal methods. The present work extends such an approach by presenting the formal synthesis of a plan controller associated to a flexible temporal plan. In particular, the controller synthesis exploits Timed Game Automata (TGA) for formal modeling and UPPAAL-TIGA as a model checker. After presenting a formal extension, the paper introduces a detailed experimental analysis on a real-world case study that demonstrates the viability of the approach. In particular, it is shown how the controller synthesis overhead is compatible with the performance expected from a short-horizon planner.


Model Checker Winning Strategy Planning Task Robotic Platform Plan Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdedaim, Y., Asarin, E., Gallien, M., Ingrand, F., Lesire, C., Sighireanu, M.: Planning Robust Temporal Plans: A Comparison Between CBTP and TGA Approaches. In: ICAPS 2007, pp. 2–10 (2007)Google Scholar
  2. 2.
    Bensalem, S., de Silva, L., Gallien, M., Ingrand, F., Yan, R.: “Rock Solid” Software: A Verifiable and Correct-by-Construction Controller for Rover and Spacecraft Functional Levels. In: i-SAIRAS 2010 (2010)Google Scholar
  3. 3.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Ceballos, A., Bensalem, S., Cesta, A., De Silva, L., Fratini, S., Ingrand, F., Ocon, J., Orlandini, A., Py, F., Rajan, K., Rasconi, R., Van Winnendael, M.: A goal-oriented autonomous controller for space exploration. In: ASTRA 2011 (2011)Google Scholar
  5. 5.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing Flexible Timeline-based Plans. In: ECAI 2010, vol. 215, pp. 471–476. IOS Press, Amsterdam (2010)Google Scholar
  6. 6.
    Cesta, A., Fratini, S.: The Timeline Representation Framework as a Planning and Scheduling Software Development Environment. In: PlanSIG 2008 (2008)Google Scholar
  7. 7.
    Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines in a Component-Based Perspective. Archives of Control Sciences 18(2), 231–271 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots, pp. 195–210. MIT Press, Cambridge (1997)Google Scholar
  9. 9.
    Goldman, R.P., Musliner, D.J., Pelican, M.J.: Exploiting implicit representations in timed automaton verification for controller synthesis. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 225–238. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Lemai, S., Ingrand, F.: Interleaving Temporal Planning and Execution in Robotics Domains. In: AAAI 2004, pp. 617–622 (2004)Google Scholar
  11. 11.
    Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed Systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Englewood Cliffs (1989)MATHGoogle Scholar
  13. 13.
    Morris, P.H., Muscettola, N.: Temporal Dynamic Controllability Revisited. In: AAAI 2005, pp. 1193–1198 (2005)Google Scholar
  14. 14.
    Morris, P.H., Muscettola, N., Vidal, T.: Dynamic Control of Plans With Temporal Uncertainty. In: IJCAI 2001, pp. 494–502 (2001)Google Scholar
  15. 15.
    Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Zweben, M., Fox, M.S. (eds.) Intelligent Scheduling, pp. 169–212. Morgan Kauffmann, San Francisco (1994)Google Scholar
  16. 16.
    Py, F., Rajan, K., McGann, C.: A Systematic Agent Framework for Situated Autonomous Systems. In: AAMAS 2010, pp. 583–590 (2010)Google Scholar
  17. 17.
    Shah, J., Williams, B.C.: Fast Dynamic Scheduling of Disjunctive Temporal Constraint Networks through Incremental Compilation. In: ICAPS 2008, pp. 322–329 (2008)Google Scholar
  18. 18.
    Vidal, T., Fargier, H.: Handling Contingency in Temporal Constraint Networks: From Consistency To Controllabilities. Journal of Experimental and Theoretical Artificial Intelligence 11(1), 23–45 (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrea Orlandini
    • 1
  • Alberto Finzi
    • 2
  • Amedeo Cesta
    • 3
  • Simone Fratini
    • 3
  1. 1.CNR – Consiglio Nazionale delle RicercheITIAMilanItaly
  2. 2.DSF – Università Federico IINaplesItaly
  3. 3.CNR – Consiglio Nazionale delle RicercheISTCRomeItaly

Personalised recommendations