Skip to main content

Variance Scaling for EDAs Revisited

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7006))

Abstract

Estimation of distribution algorithms (EDAs) are derivative-free optimization approaches based on the successive estimation of the probability density function of the best solutions, and their subsequent sampling. It turns out that the success of EDAs in numerical optimization strongly depends on scaling of the variance. The contribution of this paper is a comparison of various adaptive and self-adaptive variance scaling techniques for a Gaussian EDA. The analysis includes: (1) the Gaussian EDA without scaling, but different selection pressures and population sizes, (2) the variance adaptation technique known as Silverman’s rule-of-thumb, (3) σ-self-adaptation known from evolution strategies, and (4) transformation of the solution space by estimation of the Hessian. We discuss the results for the sphere function, and its constrained counterpart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies – a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosman, P.A.N., Grahl, J.: Matching inductive search bias and problem structure in continuous estimation-of-distribution algorithms. European Journal of Operational Research 185(3), 1246–1264 (2008)

    Article  MATH  Google Scholar 

  3. Bosman, P.A.N., Grahl, J., Thierens, D.: Enhancing the performance of maximum-likelihood gaussian edas using anticipated mean shift. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 133–143. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bosman, P.A.N., Thierens, D.: Expanding from discrete to continuous estimation of distribution algorithms: The idea. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 767–776. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Bosman, P.A.N., Thierens, D.: Numerical optimization with real-valued estimation-of-distribution algorithms. In: Scalable Optimization via Probabilistic Modeling, pp. 91–120 (2006)

    Google Scholar 

  6. Bosman, P.A.N., Thierens, D.: Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 500–507. ACM Press, New York (2007)

    Google Scholar 

  7. Cai, Y., Sun, X., Xu, H., Jia, P.: Cross entropy and adaptive variance scaling in continuous eda. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 609–616. ACM Press, New York (2007)

    Google Scholar 

  8. Grahl, J., Minner, S., Rothlauf, F.: Behaviour of umda\(_{\mbox{c}}\) with truncation selection on monotonous functions. In: Congress on Evolutionary Computation (CEC), pp. 2553–2559 (2005)

    Google Scholar 

  9. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

    Article  Google Scholar 

  10. Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)

    Google Scholar 

  11. Kramer, O.: Premature convergence in constrained continuous search spaces. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 62–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kramer, O.: Premature convergence in constrained continuous search spaces. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 62–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in continuous domains by learning and simulation of gaussian networks. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 201–204. ACM Press, New York (2000)

    Google Scholar 

  14. Mühlenbein, H.: How genetic algorithms really work: Mutation and hillclimbing. In: Parallel Problem Solving from Nature (PPSN), pp. 15–26 (1992)

    Google Scholar 

  15. Nadaraya, E.: On estimating regression. Theory of Probability and Its Application 10, 186–190 (1964)

    Article  MATH  Google Scholar 

  16. Ocenasek, J., Kern, S., Hansen, N., Koumoutsakos, P.: A mixed bayesian optimization algorithm with variance adaptation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 352–361. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self adaptation of evolution strategies. Evolutionary Computation 2(4), 369–380 (1995)

    Article  Google Scholar 

  18. Rudlof, S., Köppen, M.: Stochastic hill climbing by vectors of normal distributions. In: Proceedings of the 1st Online Workshop on Soft Computing, Nagoya, Japan (1996)

    Google Scholar 

  19. Rudolph, G.: On correlated mutations in evolution strategies. In: Parallel Problem Solving from Nature (PPSN), pp. 107–116 (1992)

    Google Scholar 

  20. Schaffer, J.D., Caruana, R., Eshelman, L.J., Das, R.: A study of control parameters affecting online performance of genetic algorithms for function optimization. In: International Conference on Genetic Algorithms - ICGA 1989, pp. 51–60 (1989)

    Google Scholar 

  21. Schwefel, H.-P.: Adaptive Mechanismen in der biologischen Evolution und ihr Einfluss auf die Evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe Bionik und Evolutionstechnik am Institut für Mess- und Regelungstechnik, TU Berlin (July 1974)

    Google Scholar 

  22. Sebag, M., Ducoulombier, A.: Extending population-based incremental learning to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability, vol. 26. Chapman and Hall, London (1986)

    Book  MATH  Google Scholar 

  24. Watson, G.: Smooth regression analysis. Sankhya Series A 26, 359–372 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Yuan, B., Gallagher, M.: On the importance of diversity maintenance in estimation of distribution algorithms. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 719–726. ACM Press, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramer, O., Gieseke, F. (2011). Variance Scaling for EDAs Revisited. In: Bach, J., Edelkamp, S. (eds) KI 2011: Advances in Artificial Intelligence. KI 2011. Lecture Notes in Computer Science(), vol 7006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24455-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24455-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24454-4

  • Online ISBN: 978-3-642-24455-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics