Advertisement

BetterRelations: Using a Game to Rate Linked Data Triples

  • Jörn Hees
  • Thomas Roth-Berghofer
  • Ralf Biedert
  • Benjamin Adrian
  • Andreas Dengel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7006)

Abstract

While associations between concepts in our memory have different strengths, explicit strengths of links (edge weights) are missing in Linked Data. In order to build a collection of such edge weights, we created a web-game prototype that ranks triples by importance. In this paper we briefly describe the game, Linked Data preprocessing aspects, and the promising results of an evaluation of the game.

Keywords

Edge Weight Link Data Importance Rating Link Open Data Cheat Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  3. 3.
    Hees, J., Roth-Berghofer, T., Dengel, A.: Linked Data Games: Simulating Human Association with Linked Data. In: Atzmüller, M., Benz, D., Hotho, A., Stumme, G. (eds.) LWA 2010, Kassel, Germany (2010)Google Scholar
  4. 4.
    von Ahn, L., Dabbish, L.: Designing games with a purpose. Communications of the ACM 51(8), 58–67 (2008)Google Scholar
  5. 5.
    Hacker, S., von Ahn, L.: Matchin: Eliciting User Preferences with an Online Game. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1207–1216. ACM, Boston (2009)Google Scholar
  6. 6.
    Siorpaes, K., Hepp, M.: OntoGame: Towards Overcoming the Incentive Bottleneck in Ontology Building. In: Chung, S., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1222–1232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Kny, E., Kölle, S., Töpper, G., Wittmers, E.: WhoKnows? (October 2010)Google Scholar
  8. 8.
    Herbrich, R., Minka, T., Graepel, T.: TrueSkill(TM): A Bayesian Skill Rating System. In: Schölkopf, B., Platt, J., Hoffmann, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 569–576. MIT Press, Cambridge (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jörn Hees
    • 1
    • 2
  • Thomas Roth-Berghofer
    • 2
    • 3
  • Ralf Biedert
    • 2
  • Benjamin Adrian
    • 2
  • Andreas Dengel
    • 1
    • 2
  1. 1.Computer Science DepartmentUniversity of KaiserslauternGermany
  2. 2.Knowledge Management DepartmentDFKI GmbHKaiserslauternGermany
  3. 3.Institute of Computer ScienceUniversity of HildesheimGermany

Personalised recommendations