Skip to main content

Efficient Sequential Clamping for Lifted Message Passing

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7006)

Abstract

Lifted message passing approaches can be extremely fast at computing approximate marginal probability distributions over single variables and neighboring ones in the underlying graphical model. They do, however, not prescribe a way to solve more complex inference tasks such as computing joint marginals for k-tuples of distant random variables or satisfying assignments of CNFs. A popular solution in these cases is the idea of turning the complex inference task into a sequence of simpler ones by selecting and clamping variables one at a time and running lifted message passing again after each selection. This naive solution, however, recomputes the lifted network in each step from scratch, therefore often canceling the benefits of lifted inference. We show how to avoid this by efficiently computing the lifted network for each conditioning directly from the one already known for the single node marginals. Our experiments show that significant efficiency gains are possible for lifted message passing guided decimation for SAT and sampling.

Keywords

  • Relational Probabilistic Models
  • Relational Learning
  • Probabilistic Inference
  • Satisfiability

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-24455-1_11
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-24455-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, U., Ihler, A., Mettu, R., Sumer, O.: Adaptive inference on general graphical models. In: Proc. of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI 2008). AUAI Press, Corvallis (2008)

    Google Scholar 

  2. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiability. Random Structures and Algorithms 27(2), 201–226 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Delcher, A.L., Grove, A.J., Kasif, S., Pearl, J.: Logarithmic-time updates and queries in probabilistic networks. JAIR 4, 37–59 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model counting. In: 20th IJCAI, Hyderabad, India, pp. 2293–2299 (January 2007)

    Google Scholar 

  5. Ihler, A.T., Fisher III, J.W., Willsky, A.S.: Loopy belief propagation: Convergence and effects of message errors. JMLR 6, 905–936 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: Proc. of the 25th Conf. on Uncertainty in AI (UAI 2009), Montreal, Canada (2009)

    Google Scholar 

  7. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47 (2001)

    Google Scholar 

  8. Mezard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Inc., New York (2009)

    CrossRef  MATH  Google Scholar 

  9. Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., Pack Kaelbling, L.: Lifted Probabilistic Inference with Counting Formulas. In: Proc. of the 23rd AAAI Conf. on Artificial Intelligence, AAAI 2008 (July 13–17, 2008)

    Google Scholar 

  10. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through belief propagation-guided decimation. In: Proc. of the 45th Allerton Conference on Communications, Control and Computing (2007)

    Google Scholar 

  11. Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: Proceedings of the Twenty-Fourth AAAI Conference on AI, AAAI 2010 (2010)

    Google Scholar 

  12. Pearl, J.: Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Morgan Kaufmann, San Francisco (1991)

    MATH  Google Scholar 

  13. Richardson, M., Domingos, P.: Markov Logic Networks. MLJ 62, 107–136 (2006)

    Google Scholar 

  14. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 521–532 (1995)

    Google Scholar 

  15. Sen, P., Deshpande, A., Getoor, L.: Bisimulation-based approximate lifted inference. In: Proc. of the 25th Conf. on Uncertainty in AI, UAI 2009 (2009)

    Google Scholar 

  16. Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: Proc. of the 23rd AAAI Conf. on AI (AAAI 2008), pp. 1094–1099 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hadiji, F., Ahmadi, B., Kersting, K. (2011). Efficient Sequential Clamping for Lifted Message Passing. In: Bach, J., Edelkamp, S. (eds) KI 2011: Advances in Artificial Intelligence. KI 2011. Lecture Notes in Computer Science(), vol 7006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24455-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24455-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24454-4

  • Online ISBN: 978-3-642-24455-1

  • eBook Packages: Computer ScienceComputer Science (R0)