Skip to main content

Order Preserving Event Aggregation in TBONs

  • Conference paper
Recent Advances in the Message Passing Interface (EuroMPI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6960))

Included in the following conference series:

Abstract

Runtime tools for MPI applications must gather information from all processes to a tool front-end for presentation. Scalability requies that tools aggregate and reduce this information so tool developers often use a Tree Based Overlay Network (TBON). TBONs aggregate multiple associated events through a hierarchical communication structure. We present a novel algorithm to execute multiple aggregations while, at the same time, preserving relevant event orders. We implement this algorithm in our tool infrastructure that provides TBON functionality as one of its services. We demonstrate that our approach provides scalability with experiments for up to 2048 tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balle, S.M., Brett, B.R., Chen, C.-P., LaFrance-Linden, D.: A New Approach to Parallel Debugger Architecture. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA 2002. LNCS, vol. 2367, pp. 139–758. Springer, Heidelberg (2002)

    Google Scholar 

  2. Bongo, L.A., Anshus, O.J., Bjørndalen, J.M.: EventSpace – Exposing and Observing Communication Behavior of Parallel Cluster Applications. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 47–56. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Evensky, D.A., Gentile, A.C., Camp, L.J., Armstrong, R.C.: Lilith: Scalable Execution of User Code for Distributed Computing. In: Proceedings of the 6th IEEE International Symposium on High Performance Distributed Computing, HPDC 1997, p. 305. IEEE Computer Society, Washington, DC (1997)

    Google Scholar 

  4. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, MobiCom 2000, pp. 56–67. ACM, New York (2000)

    Google Scholar 

  5. Krammer, B., Müller, M.S.: MPI Application Development with MARMOT. In: Joubert, G.R., Nagel, W.E., Peters, F.J., Plata, O.G., Tirado, P., Zapata, E.L. (eds.) PARCO. John von Neumann Institute for Computing Series, vol. 33, pp. 893–900. Central Institute for Applied Mathematics, Jülich (2005)

    Google Scholar 

  6. Lamport, L.: Time clocks, and the ordering of events in a distributed system. Commun. ACM 21, 558–565 (1978)

    Article  MATH  Google Scholar 

  7. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System: Design, Implementation And Experience. Parallel Computing 30, 2004 (2003)

    Google Scholar 

  8. Roth, P.C., Arnold, D.C., Miller, B.P.: MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools. In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC 2003, p. 21. ACM, New York (2003)

    Google Scholar 

  9. Shatdal, A., Naughton, J.F.: Adaptive parallel aggregation algorithms. SIGMOD Rec. 24, 104–114 (1995)

    Article  Google Scholar 

  10. Stephens, R.: A survey of stream processing. Acta Informatica 34, 491–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Teo, Y.M., Onggo, B.S.S., Tay, S.C.: Effect of Event Orderings on Memory Requirement in Parallel Simulation. In: Proceedings of the Ninth International Symposium in Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS 2001, pp. 41–48. IEEE Computer Society, Washington, DC (2001)

    Chapter  Google Scholar 

  12. Vetter, J., de Supinski, B.: Dynamic Software Testing of MPI Applications with Umpire. In: ACM/IEEE Conference on Supercomputing, November 4-10, p. 51 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hilbrich, T., Müller, M.S., Schulz, M., de Supinski, B.R. (2011). Order Preserving Event Aggregation in TBONs. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Dongarra, J. (eds) Recent Advances in the Message Passing Interface. EuroMPI 2011. Lecture Notes in Computer Science, vol 6960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24449-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24449-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24448-3

  • Online ISBN: 978-3-642-24449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics