Human Brain Mapping with Conformal Geometry and Multivariate Tensor-Based Morphometry

  • Jie Shi
  • Paul M. Thompson
  • Yalin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7012)

Abstract

In this paper, we introduce theories and algorithms in conformal geometry, including Riemann surface, harmonic map, holomorphic 1-form, and Ricci flow, which play important roles in computational anatomy. In order to study the deformation of brain surfaces, we introduce the multivariate tensor-based morphometry (MTBM) method for statistical computing. For application, we introduce our system for detecting Alzheimer’s Disease (AD) symptoms on hippocampal surfaces with an automated surface fluid registration method, which is based on surface conformal mapping and mutual information regularized image fluid registration. Since conformal mappings are diffeomorphic and the mutual information method is able to drive a diffeomorphic flow that is adjusted to enforce appropriate surface correspondences in the surface parameter domain, combining conformal and fluid mappings will generate 3D shape correspondences that are diffeomorphic. We also incorporate in the system a novel method to compute curvatures using surface conformal parameterization. Experimental results in ADNI baseline data diagnostic group difference and APOE4 effects show that our system has better performance than other similar work in the literature.

Keywords

Conformal Mapping Ricci Flow Circle Packing Conformal Geometry Human Brain Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abikoff, W.: The uniformization theorem. The American Mathematical Monthly 88(8), 574–592 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Angenent, S., Haker, S., Tannenbaum, A.R., Kikinis, R.: Conformal geometry and brain flattening. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 271–278. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Arsigny, V., et al.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
  4. 4.
    Benjamini, Y., et al.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. of the Royal Statistical Society 57, 289–300 (1995)MathSciNetMATHGoogle Scholar
  5. 5.
    Chung, M.K., et al.: Deformation-based surface morphometry applied to gray matter deformation. NeuroImage 18(2), 198–213 (2003)CrossRefGoogle Scholar
  6. 6.
    Chung, M.K., et al.: Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Trans. Med. Imag. 27(8), 1143–1151 (2008)CrossRefGoogle Scholar
  7. 7.
    Fischl, B., et al.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999)CrossRefGoogle Scholar
  8. 8.
    Gu, X., et al.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(8), 949–958 (2004)CrossRefGoogle Scholar
  9. 9.
    Guggenheimer, H.W.: Differential Geometry. Dover Publications, Mineola (1977)MATHGoogle Scholar
  10. 10.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  11. 11.
    Hurdal, M.K., et al.: Cortical cartography using the discrete conformal approach of circle packings. NeuroImage 23, 119–128 (2004)CrossRefGoogle Scholar
  12. 12.
    Lepore, N., Brun, C.A., Chiang, M.-C., Chou, Y.-Y., Dutton, R.A., Hayashi, K.M., Lopez, O.L., Aizenstein, H.J., Toga, A.W., Becker, J.T., Thompson, P.M.: Multivariate statistics of the jacobian matrices in tensor based morphometry and their application to HIV/AIDS. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 191–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lui, L.M., et al.: Computation of curvatures using conformal parameterization. Communications in Information and Systems 8(1), 1–16 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Morra, J.H., et al.: Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Human Brain Mapping 30(9), 2766–2788 (2009)CrossRefGoogle Scholar
  15. 15.
    Pievani, M., et al.: APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer’s disease. NeuroImage 55, 909–919 (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., et al.: Mutual information-based 3D surface matching with applications to face recognition and brain mapping. In: Proc. Intl Conf. Computer Vision, pp. 527–534 (2005)Google Scholar
  17. 17.
    Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.-T.: Brain surface conformal parameterization with algebraic functions. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 946–954. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Wang, Y., et al.: Brain surface conformal parameterization using Riemann surface structure. IEEE Trans. Med. Imag. 26(6), 853–865 (2007)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.-T.: Conformal slit mapping and its applications to brain surface parameterization. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 585–593. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Chan, T.F., Toga, A.W., Thompson, P.M.: Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 337–344. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Wang, Y.: Multivariate tensor-based subcortical morphometry system (2011), http://gsl.lab.asu.edu/conformal.htm
  22. 22.
    Wang, Y., et al.: MRI-based biomarker detection using conformal slit maps and machine learning. In: 16th Annual Meeting of the Organization for Human Brain Mapping (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jie Shi
    • 1
  • Paul M. Thompson
    • 2
  • Yalin Wang
    • 1
  1. 1.School of Computing, Informatics and Decision Systems EngineeringASUTempeUSA
  2. 2.Lab. of Neuro ImagingUCLA School of MedicineLos AngelesUSA

Personalised recommendations