Skip to main content

Accurate and Consistent 4D Segmentation of Serial Infant Brain MR Images

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7012))

Included in the following conference series:

Abstract

Accurate and consistent segmentation of infant brain MR images plays an important role in quantifying the early brain development, especially in longitudinal studies. However, due to rapid maturation and myelination of brain tissues in the first year of life, white-gray matter contrast undergoes dramatic changes. In fact, the contrast inverses around 6 months of age, where the white and gray matter tissues are isointense and hence exhibit the lowest contrast, posing significant challenges for segmentation algorithms. In this paper, we propose a novel longitudinally guided level set method for segmentation of serial infant brain MR images, acquired from 2 weeks up to 1.5 years of age. The proposed method makes optimal use of T1, T2 and the diffusion weighted images for complimentary tissue distribution information to address the difficulty caused by the low contrast. A longitudinally consistent term, which constrains the distance across the serial images within a biologically reasonable range, is employed to obtain temporally consistent segmentation results. The proposed method has been applied on 22 longitudinal infant subjects with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weisenfeld, N.I., Warfield, S.K.: Automatic segmentation of newborn brain MRI. NeuroImage 47(2), 564–572 (2009)

    Article  Google Scholar 

  2. Dietrich, R., et al.: MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR Am. J. Roentgenol. 150, 889–896 (1988)

    Article  Google Scholar 

  3. Shi, F., et al.: Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage 49(1), 391–400 (2010)

    Article  Google Scholar 

  4. Armstrong, E., et al.: The ontogeny of human gyrification. Cerebral Cortex 5(1), 56–63 (1995)

    Article  Google Scholar 

  5. Wang, L., et al.: Automatic segmentation of neonatal images using convex optimization and coupled level set method. In: Pan, P.J., Fan, X., Yang, Y. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Li, C.: Active contours with local binary fitting energy. In: IMA Workshop on New Mathematics and Algorithms for 3-D Image Analysis (January 2006)

    Google Scholar 

  7. Li, C., et al.: Implicit active contours driven by local binary fitting energy. In: CVPR, pp. 1–7 (2007)

    Google Scholar 

  8. Li, C., et al.: A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1083–1091. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Zeng, X., et al.: Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE TMI 18(10), 100–111 (1999)

    Google Scholar 

  10. Shen, D., Davatzikos, C.: Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage 21(4), 1508–1517 (2004)

    Article  Google Scholar 

  11. Shattuck, D., Leahy, R.: Automated graph-based analysis and correction of cortical volume topology. IEEE TMI 20(11), 1167–1177 (2001)

    Google Scholar 

  12. Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE TMI 17(1), 87–97 (1998)

    Google Scholar 

  13. Chan, T., Vese, L.: Active contours without edges. IEEE TIP 10(2), 266–277 (2001)

    MATH  Google Scholar 

  14. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Shi, F., Yap, PT., Gilmore, J.H., Lin, W., Shen, D. (2011). Accurate and Consistent 4D Segmentation of Serial Infant Brain MR Images. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds) Multimodal Brain Image Analysis. MBIA 2011. Lecture Notes in Computer Science, vol 7012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24446-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24446-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24445-2

  • Online ISBN: 978-3-642-24446-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics