Combinatorial Framework for Topological Quantum Computing

  • Mauro Carfora
  • Annalisa Marzuoli
Part of the Lecture Notes in Physics book series (LNP, volume 845)


Unlike perturbatively renormalizable quantum field theory—representing the basic tool in the standard model in particle physics, where the physically measurable quantities are obtained as finite limits of infinite series in the physical coupling constant.


Conformal Block Braid Group Previous Chapter Jones Polynomial Spin Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: Kleinberg, J.M. (ed.) Proceedings of STOC 2006: 38th ACM Symposium on Theory of Computing, pp. 427–436 (2006)Google Scholar
  2. 2.
    Anshel, I., Anshel, M.M., Goldfeld, D.: An algebraic method for public-key cryptography. Math. Res. Lett 6, 287–291 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics, Theory and applications. In: Rota G.-C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 8, Addison–Wesley, Reading (1981)Google Scholar
  4. 4.
    Biedenharn, L.C., Louck, J.D.: The Racah–Wigner algebra in quantum theory. In: Rota G.-C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 9, Addison–Wesley, Reading (1981)Google Scholar
  5. 5.
    Birman, J.S.: Braids, Links, and Mapping Class Groups. Princeton University Press, Princeton (1974)Google Scholar
  6. 6.
    Birman J.S., Brendle T.E.: Braids: a survey. In: Menasco, W., Thistlethwaite, M.B. (eds.) Handbook of Knot Theory. Elsevier, Amsterdam (2005) (eprint arXiv: math.GT/0409205)Google Scholar
  7. 7.
    Bordewich, M., Freedman, M., Lovász, L., Welsh, D.: Approximate counting and quantum computation. Comb. Probab. Comput. 14, 737–754 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Carfora, M., Marzuoli, A., Rasetti, M.: Quantum tetrahedra. J. Phys. Chem. A 113, 15376–15383 (2009)CrossRefGoogle Scholar
  9. 9.
    Carlip, S.: Quantum Gravity in 2+1 Dimensions. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Das Sarma, S., Freedman, M., Nayak, C., Simon, S.H., Stern, A.: Non-Abelian anyons and topological quantum computation. rev. Mod. Phys. 80, 1083–1159 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Drinfel’d, V.G.: Quantum groups. In: Proceedings of ICM 1986. pp. 798-820. American Mathematical Society, Providence, RI (1987)Google Scholar
  12. 12.
    Fack, V., Lievens, S., Vander Jeugt, J.: On the diameter of the rotation graph of binary coupling trees. Discr. Math. 245, 1–18 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Freedman, M.H: P/NP and the quantum field computer. Proc. Natl. Acad. Sci. USA 95, 98–101 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Freedman, M.H., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull. Amer. Math. Soc. 40, 31–38 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Freedman, H.M., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computer. Commun. Math. Phys. 227, 587–603 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Freedman, H.M., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Freyd, P., Yetter, D., Hoste, J., Lickorish, W., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. 12, 239–246 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Garey, M.R., Johnson, D.S: Computers and Intractability, A Guide to the Theory of NP-completeness. Freeman and Co, New York (1979)zbMATHGoogle Scholar
  20. 20.
    Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum computation of universal link invariants. Open Sys. Inf. Dyn. 13, 373–382 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum kinitting. Laser Phys. 16, 1582–1594 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum automata, braid group and link polynomials. Quant. Inform. Comp. 7, 479–503 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum geometry and quantum algorithms. J. Phys. A. Math. Theor. 40, 3047–3066 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Garnerone, S., Marzuoli, A., Rasetti, M.: Efficient quantum processing of 3-manifolds topological invariants. Adv. Theor. Math. Phys. 13, 1–52 (2009)MathSciNetGoogle Scholar
  25. 25.
    Gomez, C., Ruiz-Altaba, M., Sierra, G.: Quantum Group in Two-dimensional Physics. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  26. 26.
    Guadagnini, E.: The link invariants of the Chern–Simons field theory. W. de Gruyter, Berlin (1993)zbMATHCrossRefGoogle Scholar
  27. 27.
    Harrow, A.W., Recht, B., Chuang, I.L: Efficient discrete approximations of quantum gates. J. Math. Phys. 43, 4445–4451 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Jaeger, F., Vertigan, D.L., Welsh, D.J A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–53 (1990)Google Scholar
  29. 29.
    Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. 12, 103–111 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Jones, V.F.R: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)zbMATHCrossRefGoogle Scholar
  31. 31.
    Kádár, Z., Marzuoli, A., Rasetti, M.: Braiding and entanglement in spin networks: A combinatorial approach to topological phases. Int. J. Quant. Inf. 7(Suppl), 195–203 (2009)CrossRefGoogle Scholar
  32. 32.
    Kádár, Z., Marzuoli, A., Rasetti, M.: Microscopic description of 2D topological phases, duality and 3D state sums. Adv. Math. Phys. 2010, 671039 (2010)Google Scholar
  33. 33.
    Kauffman, L.: Knots and physics. World Scientific, Singapore (2001)zbMATHCrossRefGoogle Scholar
  34. 34.
    Kauffman, L.H., Lomonaco, J.S.: Topology and quantum computing. In: Entanglement and Decoherence, Lect. Notes Phys. vol. 768, pp. 87–156. Springer (2009)Google Scholar
  35. 35.
    Kaul, R.K: Chern–Simons theory, colored oriented braids and link invariants. Commun. Math. Phys. 162, 289–319 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Kaul, R.K.: Chern–Simons theory, knot invariants, vertex models and three-manifold invariants. In: Kaul, R.K. et al. (eds.) Horizons in World Physics, vol. 227, Nova Science Publ. (1999)Google Scholar
  37. 37.
    Kirby, R., Melvin, P.: The 3-manifold invariant of Witten and Reshetikhin–Turaev for \(sl(2, {\mathbb{C}}).\) Invent. Math. 105, 437–545 (1991)Google Scholar
  38. 38.
    Kirillov, A.N., Reshetikhin, N.Y.: Infinite dimensional Lie algebras and groups. In: Kac, V.G. (ed.) Infinite dimensional Lie algebras and groups, Adv. Ser. in Math. Phys., vol. 7, pp. 285–339 (1988)Google Scholar
  39. 39.
    Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Kohno, T.: Hecke algebra representations of braid groups and classical Yang–Baxter equations. Adv. Stud. Pure Math., vol. 16, pp. 255–269. Academic Press, Boston, MA (1988)Google Scholar
  41. 41.
    Lickorish, W.B.R.: An Introduction to Knot Theory. Springer, New York (1997)zbMATHCrossRefGoogle Scholar
  42. 42.
    Lloyd, S.: A theory of quantum gravity based on quantum computation. eprint quant-ph/ 0501135v8 (2005)Google Scholar
  43. 43.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group theory, 2nd edn. Dover Publications, New York (1976)Google Scholar
  44. 44.
    Marzuoli, A., Palumbo, G.: Post-quantum cryptography from mutant prime knots. arXiv: 1010.2055v1 [math-ph]Google Scholar
  45. 45.
    Marzuoli, A., Rasetti, M.: Spin network quantum simulator. Phys. Lett. A 306, 79–87 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Marzuoli, A., Rasetti, M.: Computing spin networks. Ann. Phys. 318, 345–407 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  48. 48.
    Ohtsuki, T. (ed.): Problems on invariants of knots and 3-manifolds, RIMS Geometry and Topology Monographs, vol. 4 (eprint arXiv: math.GT/0406190)Google Scholar
  49. 49.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch, F. et al. (eds.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North-Holland, Amsterdam (1968)Google Scholar
  50. 50.
    Preskill, J.: Topological quantum computing for beginners. (2004)
  51. 51.
    Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Knot invariants from rational conformal field theories. Nucl. Phys. B 422, 291–306 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Rolfsen, D.: Knots and Links. Publish or Perish, Berkeley (1976)zbMATHGoogle Scholar
  54. 54.
    Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)Google Scholar
  55. 55.
    Wiesner, K., Crutchfield, J.P.: Computation in finitary stocastic and quantum processes. Physica D 237, 1175–1195 (2008)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Witten, E.: (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 49–78 (1988)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory. Quant. Inform. Comp. 8, 147–180 (2008)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Yutsis, A.P., Levinson, I.B., Vanagas, V.V.: The Mathematical Apparatus of the Theory of Angular Momentum. Israel Program for Sci. Transl. Ltd., Jerusalem (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mauro Carfora
    • 1
  • Annalisa Marzuoli
    • 1
  1. 1.Dipto. Fisica Nucleare e TeoricaIstituto Nazionale di Fisica Nucleare e Teorica, Sez. di Pavia, Università degli Studi di PaviaPaviaItaly

Personalised recommendations