State Sum Models and Observables

  • Mauro Carfora
  • Annalisa Marzuoli
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 845)

Abstract

From a historical viewpoint the Ponzano–Regge asymptotic formula for the \(6j\) symbol of the group SU(2), together with Penrose’s original idea of combinatorial spacetime out of coupling of angular momenta—or spin networks, is the precursor of the discretized approaches to 3-dimensional (3D) Euclidean quantum gravity collectively referred to as ‘state sum models’ after the 1992 paper by Turaev and Viro.

Keywords

Dual Graph Reidemeister Move Dehn Surgery Ambient Isotopy Topological Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ambjø rn, J., Carfora, M., Marzuoli, A.: The geometry of dynamical triangulations. Lect. Notes in Physics, m 50, Springer, Berlin (1997)Google Scholar
  2. 2.
    Ambjø rn, J., Durhuus, B., Jonsson, T.: Quantum Geometry. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  3. 3.
    Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and asymptotic disentangling. J. Phys. Chem. A 113, 15106–15117 (2009)CrossRefGoogle Scholar
  4. 4.
    Aquilanti, V., Bitencourt, A.P.C., daS Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Acc. 123, 237–247 (2009)CrossRefGoogle Scholar
  5. 5.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner 3j-symbol. J. Phys. A: Math. Theor. 40, 5637–5674 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Poppe, S., Yu, L.: Asymptotics of the Wigner 6j symbol in a 4j model. Preprint 2010Google Scholar
  7. 7.
    Arcioni, G., Carfora, M., Dappiaggi, C., Marzuoli, A.: The WZW model on random Regge triangulations. J. Geom. Phys. 52, 137–173 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Arcioni, G., Carfora, M., Marzuoli, A., O’Loughin, M.: Implementing holographic projections in Ponzano–Regge gravity. Nucl.Phys. B 619, 690–708 (2001)ADSMATHCrossRefGoogle Scholar
  9. 9.
    Askey, R.:Ortogonal polynomials and special functions, society for industrial and applied mathematics, Philadelphia PE (1975) Koekoek, R., Swarttouw, R.F., The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue, Technische Universiteit Delft http://aw.twi.tudelft.nl/ koekoek/askey/, Delft, Netherlands (1998)
  10. 10.
    Atiyah, M.F.: The geometry and physics of knots. Cambridge University Press, Cambridge (1990)MATHCrossRefGoogle Scholar
  11. 11.
    Barrett, J.W., Crane, L.: Relativistic spin networks and quantum gravity. J. Math. Phys. 39, 3296–3302 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Beliakova, A., Durhuus, B.: Topological quantum field theory and invariants of graphs for quantum groups. Commun. Math. Phys. 167, 395–429 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and q-Tensor Algebra. World Scientific, Singapore (1995)Google Scholar
  14. 14.
    Biedenharn, L.C., Louck J., D.: Angular momentum in quantum physics. In: Rota, G.C. (eds) Theory and Applications, Encyclopedia of Mathematics and its Applications, Vol 8., Addison Wesley Publ Co, Reading MA (1981)Google Scholar
  15. 15.
    Biedenharn, L.C., Louck, J.D.: The Racah–Wigner algebra in quantum theory. In: Rota, G.C. (eds) Encyclopedia of Mathematics and its Applications, vol 9., Addison–Wesley Publ Co, Reading MA (1981)Google Scholar
  16. 16.
    Carbone, G.: Turaev–Viro invariant and 3nj symbols. J. Math. Phys. 41, 3068–3084 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Carbone, G.M., Carfora, M., Marzuoli, A.: Wigner symbols and combinatorial invariants of three–manifolds with boundary. Commun. Math. Phys. 212, 571–590 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Carbone, G., Carfora, M., Marzuoli, A.: Hierarchies of invariant spin models. Nucl.Phys. B 595, 654–688 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Carfora, M., Marzuoli, A., Rasetti, M.: Quantum tetrahedra. J. Phys. Chem. A 113, 15376–15383 (2009)CrossRefGoogle Scholar
  20. 20.
    Carlip, S.: Quantum Gravity in 2 + 1 Dimensions. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  21. 21.
    Carter, J.S., Flath, D.E., Saito, M.: The classical and quantum 6j-symbol. Princeton Univ. Press, Princeton (1995)Google Scholar
  22. 22.
    Cattaneo, A.S., Cotta–Ramusino, P., Frölich, J., Martellini, M.: Topological BF theories in 3 and 4 dimensions. J. Math. Phys. 36, 6137–6160 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Crane, L., Kauffman, L. H., Yetter, D. N.: State sum invariants of 4 manifolds. ArXiv:hep–th/ 9409167Google Scholar
  24. 24.
    De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785–806 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Durhuus, B., Jakobsen, H.P., Nest, R.: Topological quantum field theories from generalized 6j-symbols. Rev. Math. Phys. 5, 1–67 (1993)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Freed, D.S.: Remarks on Chern–Simons theory. Bull. Am. Math. Soc. 46, 221–254 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Freidel, L., Krasnov, K., Livine, E.R.: Holomorphic factorization for a quantum tetrahedron. Commun. Math. Phys. 297, 45–93 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Freyd, P., Yetter, D.J., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12, 239–246 (1985)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Gomez, C., Ruiz–Altaba, M., Sierra, G.: Quantum group in two-dimensional physics. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  30. 30.
    Guadagnini, E.: The link invariants of the Chern–Simons field theory. W. de Gruyter, (1993)Google Scholar
  31. 31.
    Haggard, H.M., Littlejohn, R.G.: Asymptotics of the Wigner 9j symbol. Class. Quant. Grav. 27, 135010 (2010)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Ionicioiu, R., Williams, R.M.: Lens spaces and handlebodies in 3D quantum gravity. Class. Quant. Grav. 15, 3469–3477 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Joyal, A., Street, R.: Braided tensor categories. Adv. in Math. 102, 20–78 (1993)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras Bull. Amer. Math. Soc. 12, 103–111 (1985)MATHCrossRefGoogle Scholar
  35. 35.
    Karowski, M., Schrader, R.: A combinatorial approach to topological quantum field theories and invariants of graphs. Commun. Math. Phys. 167, 355–402 (1993)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Kauffman, L.: Knots and physics. World Scientific, (2001)MATHCrossRefGoogle Scholar
  37. 37.
    Kauffman, L., Lins, S.: Temperley–Lieb recoupling theory and invariants of 3-Manifolds. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  38. 38.
    Kaul, R.K., Govindarajan, T.R.P., Ramadevi, P.: Schwarz type topological quantum field theories, in Encycl. Math. Phys., Elsevier (2005) (eprint hep–th/0504100)Google Scholar
  39. 39.
    Kirby, R., Melvin, P.: The 3-manifold invariant of Witten and Reshetikhin–Turaev for \(sl(2, {\mathbb{C}}).\) Invent. Math. 105, 437–545 (1991)Google Scholar
  40. 40.
    Kirillov, A.N., Reshetikhin, N.Y.: Infinite Dimensional Lie Algebras and Groups. In: Kac V.G. (ed) Infinite dimensional Lie algebras and groups. Adv. Ser. in Math. Phys. 7 (1988) 285–339Google Scholar
  41. 41.
    Mizoguchi, S., Tada, T.: 3-dimensional gravity from the Turaev–Viro invariant. Phys. Rev. Lett. 68, 1795–1798 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical orthogonal polynomials of a discrete variable. Springer–Verlag, Berlin (1991)MATHGoogle Scholar
  43. 43.
    Neville, D.: A technique for solving recurrence relations approximately and its application to the 3-j and 6-J symbols. J. Math. Phys. 12, 2438–2453 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    Nomura, M.: Relations for Clebsch–Gordan and Racah coefficients in \(su_q(2)\) and Yang–Baxter equations. J. Math. Phys. 30, 2397–2405 (1989)Google Scholar
  45. 45.
    Ohtsuki T. (ed).: Problems on invariants of knots and 3-manifolds, RIMS geometry and topology monographs, vol.4 (eprint arXiv: math.GT/0406190)Google Scholar
  46. 46.
    Ooguri, H.: Schwinger–Dyson equation in three-dimensional simplicial quantum gravity. Prog. Theor. Phys. 89, 1–22 (1993)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Ooguri, H.: Topological lattice models in four dimensions. Mod. Phys. Lett. A 7, 2799–2810 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    Pachner, U.: Ein Henkel Theorem für geschlossene semilineare Mannigfaltigkeiten [A handle decomposition theorem for closed semilinear manifolds]. Result. Math. 12, 386–394 (1987)MathSciNetMATHGoogle Scholar
  49. 49.
    Pachner, U.: Shelling of simplicial balls and P.L. manifolds with boundary. Discr. Math. 81, 37–47 (1990)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Pachner, U.: Homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Combin. 12, 129–145 (1991)MathSciNetMATHGoogle Scholar
  51. 51.
    Penrose, R.: Angular momentum: an approach to combinatorial space–time. In: Bastin, T. (eds) Quantum Theory and Beyond, pp. 151–180, Cambridge University Press, Cambridge (1971)Google Scholar
  52. 52.
    Ponzano G., Regge T. (1968) Semiclassical Limit of Racah coefficients. in: Bloch F. et al (eds) Spectroscopic and Group Theoretical Methods in Physics. North–Holland (1968) 1–58Google Scholar
  53. 53.
    Ragni, M., Bitencourt, A.P.C., da Ferreira, S., C. Aquilanti, V., Anderson, R.W., Littlejohn, R.G.: Exact computation and asymptotic approximations of 6j symbols: illustration of their semiclassical limits. Int. J. Quant. Chem. 110, 731–742 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Regge, T.: General Relativity without coordinates. Nuovo Cimento 19, 558–571 (1961)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Regge, T.: Symmetry properties of Racah’s coefficients. Nuovo Cimento 11, 116–117 (1958)Google Scholar
  56. 56.
    Regge, T., Williams, R.M.: Discrete structures in gravity. J. Math. Phys. 41, 3964–3984 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  57. 57.
    Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  58. 58.
    Roberts, J.D.: Skein theory and Turaev–Viro invariants. Topology 34, 771–787 (1995)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Roberts, J.D.: Classical 6j-symbols and the tetrahedron. Geom. Topol. 3, 21–66 (1999)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Rolfsen, D.: Knots and Links. Publish or Perish Inc, Berkeley (1976)MATHGoogle Scholar
  61. 61.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise–Linear Topology. Springer, Berlin (1972)MATHGoogle Scholar
  62. 62.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  63. 63.
    Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Taylor, Y.U., Woodward, C.T.: 6j symbols for \(U_q(sl_2)\) and non-Euclidean tetrahedra. Sel. Math., New ser 11, 539–571 (2005)Google Scholar
  66. 66.
    ’t Hooft, G.: The scattering matrix approach for the quantum black hole, an overview. Int. J. Mod. Phys. A 11, 4623–4688 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  67. 67.
    Turaev, V.G.: Quantum invariants of links and 3-valent graphs in 3-manifolds. Publ. Math. IHES 77, 121–171 (1993)MathSciNetMATHGoogle Scholar
  68. 68.
    Turaev, V.G.: Quantum invariants of knots and 3-manifolds. W. de Gruyter (1994)Google Scholar
  69. 69.
    Walker, K.: On Witten’s 3-manifolds invariant, Preprint (1991). (An extended version dated 2001 is available on the web)Google Scholar
  70. 70.
    Williams, R.M., Tuckey, P.A.: Regge Calculus: a bibliography and brief review. Class. Quant. Grav. 9, 1409–1422 (1992)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mauro Carfora
    • 1
  • Annalisa Marzuoli
    • 1
  1. 1.Dipto. Fisica Nucleare e TeoricaIstituto Nazionale di Fisica Nucleare e Teorica, Sez. di Pavia, Università degli Studi di PaviaPaviaItaly

Personalised recommendations