Advertisement

Singular Euclidean Structures and Riemann Surfaces

  • Mauro Carfora
  • Annalisa Marzuoli
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 845)

Abstract

As we have seen in Chap. 1, a Euclidean triangulated surface \((T_l,M)\) characterizes a polyhedral metric with conical singularities associated with the vertices of the triangulation.

Keywords

Riemann Surface Marked Point Boundary Component Quadratic Differential Conical Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Carfora, M., Dappiaggi, C., Gili, V.L.: Triangulated surfaces in Twistor space: a kinematical set up for open/closed string duality. JHEP 0612, 017 (2006). arXiv:hep-th/0607146Google Scholar
  2. 2.
    Kontsevitch, M.: Intersection theory on the moduli space of curves and the matrix Airy functions. Commun. Math. Phys. 147, 1–23 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    Looijenga, E.: Intersection theory on Deligne-Mumford compactifications. Séminaire Bourbaki 1992–1993, 768 (1996)Google Scholar
  4. 4.
    Mulase, M., Penkava, M.: Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(\overline{{\mathbb{Q} }}\). Asian J. Math. 2(4), 875–920 (1998). math-ph/9811024 v2Google Scholar
  5. 5.
    Picard, E.: De l’integration de l’equation \(\Updelta u=e^{u}\) sur une surface de Riemann fermee’, Crelle’s Journ 130, 243 (1905)Google Scholar
  6. 6.
    Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Soc. 324, 793 (1991)Google Scholar
  7. 7.
    Troyanov, M.: Les surfaces euclidiennes a’ singularites coniques. L’Enseignment Mathematique 32, 79 (1986)Google Scholar
  8. 8.
    Troyanov, M.: On the moduli space of singular Euclidean surfaces. arXiv:math/0702666v2 [math.DG]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mauro Carfora
    • 1
  • Annalisa Marzuoli
    • 1
  1. 1.Dipto. Fisica Nucleare e TeoricaIstituto Nazionale di Fisica Nucleare e Teorica, Sez. di Pavia, Università degli Studi di PaviaPaviaItaly

Personalised recommendations