Exploiting Available Memory and Disk for Scalable Instant Overview Search

  • Pavlos Fafalios
  • Yannis Tzitzikas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6997)

Abstract

Search-As-You-Type (or Instant Search) is a recently introduced functionality which shows predictive results while the user types a query letter by letter. In this paper we generalize and propose an extension of this technique which apart from showing on-the-fly the first page of results, it shows various other kinds of information, e.g. the outcome of results clustering techniques, or metadata-based groupings of the results. Although this functionality is more informative than the classic search-as-you type, since it combines Autocompletion, Search-As-You-Type, and Results Clustering, the provision of real-time interaction is more challenging. To tackle this issue we propose an approach based on pre-computed information and we comparatively evaluate various index structures for making real-time interaction feasible, even if the size of the available memory space is limited. This comparison reveals the memory/performance trade-off and allows deciding which index structure to use according to the available main memory and desired performance. Furthermore we show that an incremental algorithm can be used to keep the index structure fresh.

Keywords

Main Memory Index Structure Retrieval Time Query Suggestion Search Engine Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bast, H., Chitea, A., Suchanek, F., Weber, I.: Ester: efficient search on text, entities, and relations. In: SIGIR 2007, pp. 671–678. ACM, New York (2007)Google Scholar
  2. 2.
    Bast, H., Weber, I.: Type less, find more: fast autocompletion search with a succinct index. In: SIGIR 2006, pp. 364–371. ACM, New York (2006)Google Scholar
  3. 3.
    Basu Roy, S., Wang, H., Das, G., Nambiar, U., Mohania, M.: Minimum-effort driven dynamic faceted search in structured databases. In: CIKM 2008. ACM, New York (2008)Google Scholar
  4. 4.
    Dakka, W., Ipeirotis, P., Wood, K.: Automatic construction of multifaceted browsing interfaces. In: CIKM 2005, pp. 768–775. ACM, New York (2005)Google Scholar
  5. 5.
    Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword search. In: WWW 2009, pp. 371–380. ACM, New York (2009)Google Scholar
  6. 6.
    Kashyap, A., Hristidis, V., Petropoulos, M.: Facetor: cost-driven exploration of faceted query results. In: CIKM 2010, pp. 719–728. ACM, New York (2010)Google Scholar
  7. 7.
    Kastrinakis, D., Tzitzikas, Y.: Advancing search query autocompletion services with more and better suggestions. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 35–49. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kopidaki, S., Papadakos, P., Tzitzikas, Y.: STC+ and NM-STC: Two novel online results clustering methods for web searching. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp. 523–537. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Li, G., Feng, J., Zhou, L.: Interactive search in xml data. In: WWW 2009, pp. 1063–1064. ACM, New York (2009)Google Scholar
  10. 10.
    Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on relational data: a tastier approach. In: SIGMOD 2009, pp. 695–706. ACM, New York (2009)Google Scholar
  11. 11.
    Li, S., Yu, W., Gu, X., Jiang, H., Fang, C.: Efficient interactive smart keyword search. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 204–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Papadakos, P., Kopidaki, S., Armenatzoglou, N., Tzitzikas, Y.: Exploratory web searching with dynamic taxonomies and results clustering. In: Agosti, M., Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 106–118. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Shang, H., Merrettal, T.: Tries for approximate string matching. IEEE Knowledge and Data Engineering, 540–547 (1996)Google Scholar
  14. 14.
    Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine query log. In: SIGIR 1999, pp. 6–12. ACM, New York (1999)Google Scholar
  15. 15.
    Wu, H., Li, G., Li, C., Zhou, L.: Seaform: search-as-you-type in forms. In: VLDB 2010, pp. 1565–1568 (2010)Google Scholar
  16. 16.
    Xie, Y., O’Hallaron, D.: Locality in search engine queries and its implications for caching. In: IEEE INFOCOM 2002, pp. 1238–1247. IEEE, Los Alamitos (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pavlos Fafalios
    • 1
    • 2
  • Yannis Tzitzikas
    • 1
    • 2
  1. 1.Institute of Computer ScienceFORTH-ICSGreece
  2. 2.Computer Science DepartmentUniversity of CreteGreece

Personalised recommendations