Performability Measure Specification: Combining CSRL and MSL

  • Alessandro Aldini
  • Marco Bernardo
  • Jeremy Sproston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6959)


An integral part of the performance modeling process is the specification of the performability measures of interest. The notations proposed for this purpose can be grouped into classes that differ from each other in their expressiveness and usability. Two representative notations are the continuous stochastic reward logic CSRL and the measure specification language MSL. The former is a stochastic temporal logic formulating quantitative properties about states and paths, while the latter is a component-oriented specification language relying on a first-order logic for defining reward-based measures. In this paper, we combine CSRL and MSL in order to take advantage of the expressiveness of the former and the usability of the latter. To this aim, we develop a unified notation in which the core logic of MSL is employed to set up the reward structures needed in CSRL, whereas the measure definition mechanism of MSL is exploited to formalize measure and property specification patterns in a component-oriented fashion.


Model Check Temporal Logic Disjunctive Normal Form Reward Structure Component Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldini, A., Bernardo, M.: Mixing Logics and Rewards for the Component-Oriented Specification of Performance Measures. Theoretical Computer Sc. 382, 3–23 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software Architecture Design. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Baier, C., Cloth, L., Haverkort, B., Hermanns, H., Katoen, J.-P.: Performability Assessment by Model Checking of Markov Reward Models. Formal Methods in System Design 36, 1–36 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: On the Logical Characterisation of Performability Properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-Checking Algorithms for Continuous-Time Markov Chains. IEEE Trans. on Software Eng. 29, 524–541 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  7. 7.
    Bernardo, M., Hillston, J. (eds.): Formal Methods for Performance Evaluation. LNCS, vol. 4486. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.): Lectures on Formal Methods and Performance Analysis. LNCS, vol. 2090. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  9. 9.
    Courtney, T., Daly, D., Derisavi, S., Gaonkar, S., Griffith, M., Lam, V., Sanders, W.: The Möbius Modeling Environment: Recent Developments. In: Proc. of the 1st Int. Conf. on Quantitative Evaluation of Systems (QEST 2004), pp. 328–329. IEEE-CS Press, Los Alamitos (2004)Google Scholar
  10. 10.
    Clark, G., Hillston, J.: Towards Automatic Derivation of Performance Measures from PEPA Models. In: Proc. of the 12th UK Performance Engineering Workshop (1996)Google Scholar
  11. 11.
    De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model Checking Mobile Stochastic Logic. Theoretical Computer Science 382, 42–70 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    De Nicola, R., Vaandrager, F.: Action Versus State Based Logics for Transition Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Grunske, L.: Specification Patterns for Probabilistic Quality Properties. In: Proc. of the 30th Int. Conf. on Software Engineering (ICSE 2008), pp. 31–40. ACM Press, New York (2008)Google Scholar
  14. 14.
    Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Towards model checking stochastic process algebra. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, p. 420. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Model Checking Stochastic Process Algebra, Technical Rep. IMMD7-2/00, University of Erlangen-Nürnberg (2000)Google Scholar
  16. 16.
    Howard, R.A.: Dynamic Probabilistic Systems. John Wiley & Sons, Chichester (1971)zbMATHGoogle Scholar
  17. 17.
    Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov Reward Model Checker. In: Proc. of the 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST 2005), pp. 243–244. IEEE-CS Press, Los Alamitos (2005)CrossRefGoogle Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Obal, W., Sanders, W.: State-Space Support for Path-Based Reward Variables. Performance Evaluation 35, 233–251 (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance Trees: Expressiveness and Quantitative Semantics. In: Proc. of the 4th Int. Conf. on the Quantitative Evaluation of Systems (QEST 2007), pp. 41–50. IEEE-CS Press, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alessandro Aldini
    • 1
  • Marco Bernardo
    • 1
  • Jeremy Sproston
    • 2
  1. 1.Università di Urbino “Carlo Bo”Italy
  2. 2.Università di TorinoItaly

Personalised recommendations