Characterisation of Nano-antimicrobial Materials

  • Timothy Sullivan
  • James Chapman
  • Fiona Regan


The potential applications of nano-antimicrobial materials are well recognised. A large suite of characterisation techniques are available for the study of nano-antimicrobial materials. The choice of technique depends on the material properties in question and the information required. The focus of this chapter is on the surface and interface techniques as these provide information on material activity and efficacy. Antimicrobial properties of a nanomaterial must be characterised in terms of two interrelated aspects. The nature of the chemical and physical properties of the nanomaterial in question must be fully characterised in terms of, i.e. particle morphology and the elemental composition of the particle. Subsequently, it is necessary to characterise the material in terms of antimicrobial potential. This chapter provides a general guide and overview of characterisation techniques available to researchers studying nano-antimicrobial materials, including key microscopic methods, spectroscopic methods, and some physical surface characterisation methods. The chapter identifies how these techniques can be used to study the physical characteristics of the nanomaterials themselves and the antimicrobial effects on the material surface.


Atomic Force Microscopy Field Emission Scanning Electron Microscopy Laser Scan Confocal Microscopy Energy Dispersive Spectroscopy Antimicrobial Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Panigrahi, et al. (2004) General method of synthesis for metal nanoparticles. J. Nanopart. Res. 6(4), pp. 411–414.CrossRefGoogle Scholar
  2. 2.
    S. D. Solomon, et al. (2007) Synthesis and study of silver nanoparticles. J. Chem. Educ. 84(2), pp. 322.CrossRefGoogle Scholar
  3. 3.
    W. Li, Q. Jia and H. L. Wang. (2006) Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer 47(1), pp. 23–26.CrossRefGoogle Scholar
  4. 4.
    J. R. Morones, et al. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), pp. 2346–2353.CrossRefGoogle Scholar
  5. 5.
    J. Jain, et al. (2009) Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm. 6(5), pp. 1388–1401.CrossRefGoogle Scholar
  6. 6.
    V. Sambhy, et al. (2006) Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128(30), pp. 9798–9808.CrossRefGoogle Scholar
  7. 7.
    B. L. Cushing, V. L. Kolesnichenko and C. J. O’Connor. (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., vol. 104, pp. 3893–3946, Sep. 2004.Google Scholar
  8. 8.
    T. Endo, et al. (2008) Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal. Chim. Acta 611(2), pp. 205–211.CrossRefGoogle Scholar
  9. 9.
    C. Yang, et al. (2003) Highly dispersed metal nanoparticles in functionalized SBA-15. Chem.Mater 15(1), pp. 275–280.CrossRefGoogle Scholar
  10. 10.
    F. Zeng, et al. (2007) Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18(055605), pp. 055605.Google Scholar
  11. 11.
    S. Y. Kwak, S. H. Kim and S. S. Kim. (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35(11), pp. 2388–2394.CrossRefGoogle Scholar
  12. 12.
    V. Stanić, et al. (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 256(20), pp. 6083–6089.Google Scholar
  13. 13.
    P. Jain and T. Pradeep. (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90(1), pp. 59–63.CrossRefGoogle Scholar
  14. 14.
    W. K. Son, J. H. Youk and W. H. Park (2006). Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym. 65(4), pp. 430–434.Google Scholar
  15. 15.
    S. Ghosh, et al. (2010) Antimicrobial activity of highly stable silver nanoparticles embedded in agar–agar matrix as a thin film. Carbohydr. Res. 345(15), pp. 2220–2227.Google Scholar
  16. 16.
    J.E. Morris (2008) Nanopackaging: nanotechnologies and electronics packaging, Springer book series.Google Scholar
  17. 17.
    J. Chapman, E. Weir and F. Regan. (2010) Period four metal nanoparticles on the inhibition of biofouling. Colloids and Surfaces B: Biointerfaces 78(2), pp. 208–216.Google Scholar
  18. 18.
    G. Nangmenyi, X. Li, S. Mehrabil, E. Mintz, J. Economy, (2011) Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water, Materials letters, 65(8) pp 1191–1193Google Scholar
  19. 19.
    Y. Xiang and D. Chen. (2007 10). Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. European Polymer Journal, 43(10), pp. 4178–4187.Google Scholar
  20. 20.
    R. Dastjerdi and M. Montazer. (2010 8/1). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloid. Surface. B 79(1), pp. 5–18.Google Scholar
  21. 21.
    M. E. Samberg, P. E. Orndorff and N. Monteiro-Riviere. (2010 11/01; 2011/02). Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology pp. 1–10. Available:
  22. 22.
    H. G. Hansma and L. Pietrasanta. (1998) Atomic force microscopy and other scanning probe microscopies. Curr. Opin. Chem. Biol. 2(5), pp. 579–584.CrossRefGoogle Scholar
  23. 23.
    J. Roqué, et al. (2005) Evidence of nucleation and growth of metal cu and ag nanoparticles in lustre: AFM surface characterization. J. Non Cryst. Solids 351(6–7), pp. 568–575.CrossRefGoogle Scholar
  24. 24.
    G. Binnig, C. F. Quate and C. Gerber. (1986) Atomic force microscope. Phys. Rev. Lett. 56(9), pp. 930–933.CrossRefGoogle Scholar
  25. 25.
    J. Verran, et al. (2010) Use of the atomic force microscope to determine the strength of bacterial attachment to grooved surface features. J. Adhes. Sci. Technol. 24 13(14), pp. 2271–2285.Google Scholar
  26. 26.
    B. C. van der Aa and Y. F. Dufrêne. (2002 2) In situ characterization of bacterial extracellular polymeric substances by AFM. Colloid. Surface. B 23(2–3), pp. 173–182.Google Scholar
  27. 27.
    V. Stanić, et al. (2011 2/15) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl. Surf. Sci. 257(9), pp. 4510–4518.Google Scholar
  28. 28.
    I. B. Beech. (1996) The potential use of atomic force microscopy for studying corrosion of metals in the presence of bacterial biofilms — an overview. Int. Biodeterior. Biodegrad. 37(3–4), pp. 141–149.CrossRefGoogle Scholar
  29. 29.
    I. B. Beech, et al. (2002 2) The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloid. Surface. B 23(2–3), pp. 231–247.Google Scholar
  30. 30.
    S. Shrivastava, et al. (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, pp. 225103.CrossRefGoogle Scholar
  31. 31.
    J. Park, et al. (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 44(19), pp. 2872–2877.CrossRefGoogle Scholar
  32. 32.
    W. A. Daoud, J. H. Xin and Y. H. Zhang. (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 599(1–3), pp. 69–75.CrossRefGoogle Scholar
  33. 33.
    D. K. Božanić, et al. (2011 1/10). Silver nanoparticles encapsulated in glycogen biopolymer: Morphology, optical and antimicrobial properties. Carbohydr. Polym. 83(2), pp. 883–890.Google Scholar
  34. 34.
    J. M. Thomas, et al. (2008 05/01). Electron holography for the study of magnetic nanomaterials. Acc. Chem. Res. 41(5), pp. 665–674. Available:
  35. 35.
    O. Choi, et al. (2010 12). Interactions of nanosilver with escherichia coli cells in planktonic and biofilm cultures. Water Res. 44(20), pp. 6095–6103. Available:
  36. 36.
    N. Cioffi, et al. (2005) Synthesis, analytical characterization and bioactivity of ag and cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal. Bioanal. Chem. 382(8), pp. 1912–1918.CrossRefGoogle Scholar
  37. 37.
    T. R. Neu and J. R. Lawrence. (2010). Extracellular polymeric substances in microbial biofilms, in Microbial Glycobiology Otto Holst, Patrick J. Brennan and Mark von Itzstein, Eds.Google Scholar
  38. 38.
    M. Obst, et al. (2009 7/15). Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochim. Cosmochim. Acta 73(14), pp. 4180–4198.Google Scholar
  39. 39.
    V. Lazarova and J. Manem. (1995 10) Biofilm characterization and activity analysis in water and wastewater treatment. Water Res. 29(10), pp. 2227–2245.Google Scholar
  40. 40.
    P. S. Stewart, et al. (1995 8) Biofilm structural heterogeneity visualized by three microscopic methods. Water Res. 29(8), pp. 2006–2009.Google Scholar
  41. 41.
    P. S. Stewart and J. William Costerton. (2001 7/14) Antibiotic resistance of bacteria in biofilms. The Lancet 358(9276), pp. 135–138.Google Scholar
  42. 42.
    G. Wolf, J. G. Crespo and M. A. M. Reis. (2002) Optical and spectroscopic methods for biofilm examination and monitoring. Rev. Environ. Sci. Biotechnol. 1(3), pp. 227–251.CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, et al. (2008 9/15) Facile preparation and characterization of highly antimicrobial colloid ag or au nanoparticles. J. Colloid Interface Sci. 325(2), pp. 371–376.Google Scholar
  44. 44.
    M. G. Weinbauer, C. Beckmann and M. G. Hofle. (1998) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl. Environ. Microbiol. 64(12), pp. 5000.Google Scholar
  45. 45.
    W. S. Rasband and U. ImageJ. (1997) National institutes of health. Bethesda, Maryland, USA 2007 Google Scholar
  46. 46.
    L. C. Simões, et al. (2006) Drinking water biofilm assessment of total and culturable bacteria under different operating conditions. Biofouling 22(2), pp. 91–99.CrossRefGoogle Scholar
  47. 47.
    A. Kerr, et al. (1998 4) The early stages of marine biofouling and its effect on two types of optical sensors. Environ. Int. 24(3), pp. 331–343.Google Scholar
  48. 48.
    C. Leroy, et al. (2007) A marine bacterial adhesion microplate test using the DAPI fluorescent dye: A new method to screen antifouling agents. Lett. Appl. Microbiol. 44(4), pp. 372–378.MathSciNetCrossRefGoogle Scholar
  49. 49.
    T. Schmid, et al. (2004 3) Investigation of biocide efficacy by photoacoustic biofilm monitoring. Water Res. 38(5), pp. 1189–1196.Google Scholar
  50. 50.
    T. P. Trainor, A. S. Templeton and P. J. Eng. (2006 2) Structure and reactivity of environmental interfaces: Application of grazing angle X-ray spectroscopy and long-period X-ray standing waves. J. Electron Spectrosc. 150(2–3), pp. 66–85.Google Scholar
  51. 51.
    X. Liu, et al. (2007) Fabrication and characterization of Ag/polymer nanocomposite films through layer-by-layer self-assembly technique. Thin Solid Films 515(20–21), pp. 7870–7875.CrossRefGoogle Scholar
  52. 52.
    J. Grivet and A. Delort. (2009 1) NMR for microbiology: In vivo and in situ applications. Prog. Nucl. Magn. Reson. Spectrosc. 54(1), pp. 1–53.Google Scholar
  53. 53.
    L. Brecker and D. W. Ribbons. (2000 5/1) Biotransformations monitored in situ by proton nuclear magnetic resonance spectroscopy. Trends Biotechnol. 18(5), pp. 197–202.Google Scholar
  54. 54.
    H. S. Vrouwenvelder, et al. (1998 9/20) Biofouling of membranes for drinking water production. Desalination 118(1–3), pp. 157–166.Google Scholar
  55. 55.
    L. Baia and S. Simon. (2007) UV-VIS and TEM assessment of morphological features of silver nanoparticles from phosphate glass matrices.Google Scholar
  56. 56.
    V. K. Sharma, R. A. Yngard and Y. Lin. (2009 1/30) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145(1–2), pp. 83–96.Google Scholar
  57. 57.
    A. Slistan-Grijalva, et al. (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Phys. E: Low-Dimens. Sys. Nanostructures 27(1–2), pp. 104–112.CrossRefGoogle Scholar
  58. 58.
    C. Lee, et al. (2011 4/6) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys. J. 100(7), pp. 1688–1696.Google Scholar
  59. 59.
    T. Fekete, et al. (1994 4) A comparison of serial plate agar dilution, bauer-kirby disk diffusion, and the vitek automicrobic system for the determination of susceptibilities of klebsiella spp., enterobacter spp., and pseudomonas aeruginosa to ten antimicrobial agents. Diagn. Microbiol. Infect. Dis. 18(4), pp. 251–258.Google Scholar
  60. 60.
    V. Sambhy, et al. (2005) Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. Molecules 6, pp. 514–520.Google Scholar
  61. 61.
    D. Kim, et al. (2007 6/25) Formation and immobilization of silver nanoparticles onto chromia surface by novel preparation route involving polyol process. Surf. Coat. Technol. 201(18), pp. 7663–7667.Google Scholar
  62. 62.
    A. R. Shahverdi, et al. (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against staphylococcus aureus and escherichia coli. Nanomedicine: Nanotechnology, Biol. Med. 3(2), pp. 168–171.CrossRefGoogle Scholar
  63. 63.
    I. Sondi and B. Salopek-Sondi. (2004) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275(1), pp. 177–182.CrossRefGoogle Scholar
  64. 64.
    S. Pal, Y. K. Tak and J. M. Song. (2007 3) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, pp. 1712–1720.Google Scholar
  65. 65.
    P. A. Suci, J. D. Vrany and M. W. Mittelman. (1998) Investigation of interactions between antimicrobial agents and bacterial biofilms using attenuated total reflection fourier transform infrared spectroscopy. Biomaterials 19(4–5), pp. 327–339.CrossRefGoogle Scholar
  66. 66.
    D. Osiro, et al. (2004) A kinetic model for xylella fastidiosa adhesion, biofilm formation, and virulence. FEMS Microbiol. Lett. 236(2), pp. 313–318.CrossRefGoogle Scholar
  67. 67.
    M. Kansiz, et al. (1999) Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry 52(3), pp. 407–417.CrossRefGoogle Scholar
  68. 68.
    D. Naumann. (2000) Infrared spectroscopy in microbiology.Google Scholar
  69. 69.
    N. Branan and T. A. Wells. (2007) Microorganism characterization using ATR-FTIR on an ultrathin polystyrene layer. Vib. Spectrosc. 44(1), pp. 192–196.CrossRefGoogle Scholar
  70. 70.
    G. Gunasekaran, et al. (2004 8). Influence of bacteria on film formation inhibiting corrosion. Corros. Sci. 46(8), pp. 1953–1967.Google Scholar
  71. 71.
    S. Chongdar, G. Gunasekaran and P. Kumar. (2005 8/30) Corrosion inhibition of mild steel by aerobic biofilm. Electrochim. Acta 50(24), pp. 4655–4665.Google Scholar
  72. 72.
    C. Sandt, et al. (2008 9) Quantification of local water and biomass in wild type PA01 biofilms by confocal raman microspectroscopy. J. Microbiol. Methods 75(1), pp. 148–152.Google Scholar
  73. 73.
    M. Strathmann, J. Wingender and H. Flemming. (2002 8). Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of pseudomonas aeruginosa. J. Microbiol. Methods 50(3), pp. 237–248.Google Scholar
  74. 74.
    N. Abu Bakar, J. Ismail and M. Abu Bakar. (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater. Chem. Phys. 104(2–3), pp. 276–283.CrossRefGoogle Scholar
  75. 75.
    M. Montazer, et al. Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J. Photoch. Photobiolo. B (In Press, Corrected Proof)Google Scholar
  76. 76.
    S. K. Brar and M. Verma. (2011 1) Measurement of nanoparticles by light-scattering techniques. TRAC-Trend. Anal. Chem. 30(1), pp. 4–17.Google Scholar
  77. 77.
    T. Zhang, T. F. Sturgis and B. C. Youan. pH-responsive nanoparticles releasing tenofovir for the prevention of HIV transmission. Eur. J. Pharm. Biopharm. (In Press, Accepted Manuscript)Google Scholar
  78. 78.
    S. Jaiswal, et al. (2010 9) Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. Int. J. Antimicrob. Agents 36(3), pp. 280–283.Google Scholar
  79. 79.
    A. Bankar, et al. (2010 10/1) Banana peel extract mediated synthesis of gold nanoparticles. Colloid. Surface. B 80(1), pp. 45–50.Google Scholar
  80. 80.
    H. Zhou, et al. (2011 2) Nucleic acids determination using the complex of eriochrome black T and silver nanoparticles in a resonance light scattering technique. Spectrochim. Acta A 78(2), pp. 681–686.Google Scholar
  81. 81.
    F. Rispoli, et al. (2010 8/15) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J. Hazard. Mater. 180(1–3), pp. 212–216.Google Scholar
  82. 82.
    S. L. Chinnapongse, R. I. MacCuspie and V. A. Hackley. (2011 5/15) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 409(12), pp. 2443–2450.Google Scholar
  83. 83.
    Y. H. Ngo, et al. (2011 3/15) Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 163(1), pp. 23–38.Google Scholar
  84. 84.
    J. C. Garay-Jimenez and E. Turos. A convenient method to prepare emulsified polyacrylate nanoparticles from for drug delivery applications. Bioorg. Med. Chem. Lett. (In Press, Corrected Proof)Google Scholar
  85. 85.
    I. Rezić. Determination of engineered nanoparticles on textiles and in textile wastewaters. TRAC-Trend. Anal. Chem. (In Press, Corrected Proof)Google Scholar
  86. 86.
    J. Zhang, et al. (2007 12) Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine: Nanotechnology, Biol. Med. 3(4), pp. 258–265.Google Scholar
  87. 87.
    Y. Lee, et al. (2006 11/10) Preparation of au colloids by polyol process using NaHCO3 as a buffering agent. Mater. Chem. Phys. 100(1), pp. 85–91.Google Scholar
  88. 88.
    L. Huo, et al. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against streptococcus mutans. Arch. Oral Biol. (In Press, Corrected Proof)Google Scholar
  89. 89.
    R. Potter, L. Truelstrup Hansen and T. A. Gill. (2005 8/15) Inhibition of foodborne bacteria by native and modified protamine: Importance of electrostatic interactions. Int. J. Food Microbiol. 103(1), pp. 23–34.Google Scholar
  90. 90.
    D. Guzey and D. J. McClements. (2006 1) Characterization of β-lactoglobulin–chitosan interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocoll. 20(1), pp. 124–131.Google Scholar
  91. 91.
    S. -. Liu, et al. (2000) Lipophilization of lysozyme by short and middle chain fatty acids. J. Agric. Food Chem. 48(2), pp. 265–269.CrossRefGoogle Scholar
  92. 92.
    J. Wan, A. Wilcock and M. J. Coventry. (1998) The effect of essential oils of basil on the growth of aeromonas hydrophila and pseudomonas fluorescens. J. Appl. Microbiol. 84(2), pp. 152–158.CrossRefGoogle Scholar
  93. 93.
    Y. Wang, X. Pang and I. Zhitomirsky. Electrophoretic deposition of chiral polymers and composites. Colloid. Surface. B (In Press, Corrected Proof)Google Scholar
  94. 94.
    I. Hirata, et al. (2000) Surface modification of si 3 N 4-coated silicon plate for investigation of living cells. Jpn.J.Appl.Phys., Part 1 39(11), pp. 6441–6442.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Marine and Environmental Sensing Technology Hub (MESTECH), National Centre for Sensor ResearchDublin City UniversityDublinIreland
  2. 2.Marine and Environmental Sensing Technology Hub (MESTECH), National Centre for Sensor Research, School of Chemical SciencesDublin City UniversityDublinIreland

Personalised recommendations