Electrosynthesis and Characterisation of Antimicrobial Modified Protein Nanoaggregates

  • Catherine Debiemme-Chouvy


This chapter deals with electrochemical modification of proteins in aqueous solution leading to antimicrobial halogenated–protein nano-aggregates. It is divided into four parts. After an introduction with a presentation of biocidal N-halamine organic polymers, the first part describes the methods to obtain nanoclusters resulting from polymerization of proteins (bovine serum albumin) in the presence of electrogenerated hypochlorous and/or hypobromous acid in an aqueous solution. The substrate used to oxidize chloride and/or bromide ions is a transparent conductive film of tin dioxide deposited on glass. The second part of the chapter shows the chemical characterization by various techniques (EDX, XPS and TNB reagent) of these protein nanoclusters. The presence of chloramine and/or bromamine groups (N-halamine) is demonstrated. Next, the reaction mechanism i.e. protein polymerization and chloramine and/or bromamine formation is discussed. Finally, the capability of these clusters to prevent surface colonization by bacteria is shown. The main advantages of the synthesis described in this chapter are (1) it corresponds to a green chemistry approach, no organic solvent or toxic compounds are used, and (2) it is an easy and inexpensive process, only one step is needed to obtain a coating of antimicrobial protein nano-aggregates, notably onto a conductive SnO2 substrate.


Bovine Serum Albumin Molecule SnO2 Film Bovine Serum Albumin Adsorb SnO2 Electrode NaBr Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Delauney L, Compère C, Lehaitre M (2010) Biofouling protection for marine environmental sensors. Ocean Sci. 6: 503–511.CrossRefGoogle Scholar
  2. 2.
    White’s handbook of chlorination and alternative disinfectants – 5th edition/Black & Veatch, John Wiley, Hoboken (USA), 2010.Google Scholar
  3. 3.
    Worley SD, Williams DE (1988) Halamine water disinfectants. CRC Crit. Rev. Environ. Control 18: 133–175.CrossRefGoogle Scholar
  4. 4.
    Worley SD, Williams DE, Barnela SB (1987) The stabilities of new N-halamine water disinfectants. Wat. Res. 21: 983–988.CrossRefGoogle Scholar
  5. 5.
    Worley SD, Burkett HD, Price JF (1984) The tendency of a new water disinfectant to produce toxic trihalomethanes. Wat. Resour. Bull. 20: 369–371.CrossRefGoogle Scholar
  6. 6.
    Chen Y, Worley SD, Huang TS, Weese J, Kim J, Wei CI, Williams JF (2004) Biocidal polystyrene beads. III. Comparison of N-halamine and quat functional groups. J. Appl. Polym. Sci. 92: 363–367.CrossRefGoogle Scholar
  7. 7.
    Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromol. 8: 1359–1384.CrossRefGoogle Scholar
  8. 8.
    Kou L, Liang J, Ren XH, Kocer HB, Worley SD, Broughton RM, Huang TS (2009) Novel N-halamine silanes. Colloids Surf. A-Physicochem. Eng. Aspects 345: 88–94.CrossRefGoogle Scholar
  9. 9.
    Cao ZB, Sun YY (2008) N-Halamine-based chitosan: Preparation, characterization, and antimicrobial function. J. Biomed. Mat. Res. Part A 85A: 99–107.CrossRefGoogle Scholar
  10. 10.
    Sun J, Sun YY (2006) Acyclic N-halamine-based fibrous materials: Preparation, characterization, and biocidal functions. J. Polym. Sci. Part A-Polym. Chem. 44: 3588–3600.CrossRefGoogle Scholar
  11. 11.
    Ren XH, Zhu CY, Kou L, Worley SD, Kocer HB, Broughton RM, Huang TS (2010) Acyclic N-Halamine Polymeric Biocidal Films. J. Bioact. Comp. Polym. 25: 392–405.CrossRefGoogle Scholar
  12. 12.
    Luo J, Sun YY (2008) Acyclic N-halamine-based biocidal tubing: Preparation, characterization, and rechargeable biofilm-controlling functions. J. Biomed. Mat. Res. Part A 84A: 631–642.CrossRefGoogle Scholar
  13. 13.
    Liu S, Sun G (2009) New Refreshable N-Halamine Polymeric Biocides: N-Chlorination of Acyclic Amide Grafted Cellulose. Ind. Eng. Chem. Res. 48: 613–618.CrossRefGoogle Scholar
  14. 14.
    Badrossamay MR, Sun G (2008) Acyclic halamine polypropylene polymer: Effect of monomer structure on grafting efficiency, stability and biocidal activities. React. Funct. Polym. 68: 1636–1645.CrossRefGoogle Scholar
  15. 15.
    Sun Y, Chen TY, Worley SD, Sun G (2001) Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J. Polym. Sci., Part A: Polym. Chem. 39: 3073–3084.CrossRefGoogle Scholar
  16. 16.
    Chen ZB, Sun YY (2005) N-chloro-hindered amines as multifunctional polymer additives. Macromol. 38: 8116–8119.CrossRefGoogle Scholar
  17. 17.
    Sun G, Xu XJ, Bickett JR, Williams JF (2001) Durable and regenerable antibacterial finishing of fabrics with a new hydantoin derivative. Ind. Eng. Chem. Res. 40: 1016–1021.CrossRefGoogle Scholar
  18. 18.
    Lin J, Winkelman C, Worley SD, Broughton RM, Williams JF (2001) Antimicrobial treatment of nylon. J. Appl. Polym. Sci. 81: 943–947.CrossRefGoogle Scholar
  19. 19.
    Sun Y, Sun G (2002) Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process. J. Appl. Polym. Sci. 84: 1592–1599.CrossRefGoogle Scholar
  20. 20.
    Braun M, Sun YY (2004) Antimicrobial polymers containing melamine derivatives. I. Preparation and characterization of chloromelamine-based cellulose. J. Polym. Sci. Part A-Polym. Chem. 42: 3818–3827.CrossRefGoogle Scholar
  21. 21.
    Lin J, Cammarata V, Worley SD (2001) Infrared characterization of biocidal nylon. Polymer 42: 7903–7906.CrossRefGoogle Scholar
  22. 22.
    Cao ZB, Sun YY (2009) Polymeric N-Halamine latex emulsions for use in antimicrobial paints. Acs Appl. Mat. Interface 1: 494–504.CrossRefGoogle Scholar
  23. 23.
    Ahmed AEI, Hay JN, Bushell ME, Wardell JN, Cavalli G (2008) Biocidal polymers (I): Preparation and biological activity of some novel biocidal polymers based on uramil and its azo-dyes. React. Funct. Pol. 68: 248–260.CrossRefGoogle Scholar
  24. 24.
    Bruneaux J, Cachet H, Froment M, Messad A (1994) Structural, electrical and interfacial properties of sprayed SnO2 Films. Electrochim. Acta 39: 1251–1257.CrossRefGoogle Scholar
  25. 25.
    Connick RE, Chia YT (1959) The hydrolysis of chlorine and its variation with temperature. J. Am. Chem. Soc. 81: 1280–1284.CrossRefGoogle Scholar
  26. 26.
    Ed, Bard, AJ, Parsons, R, Jordan, J, Dekker, A Standard potentials in aqueous solution. Marcel Dekker, New York, 1985, pp. 76–77.Google Scholar
  27. 27.
    Debiemme-Chouvy C, Haskouri S, Folcher G, Cachet H (2007) An original route to immobilize an organic biocide onto a transparent tin dioxide electrode. Langmuir 23: 3873–3879.CrossRefGoogle Scholar
  28. 28.
    Bendedouch D, Chen SH (1983) Structure and Interparticle Interactions of Bovine Serum-Albumin in Solution Studied by Small-Angle Neutron-Scattering. J. Phys. Chem. 87: 1473–1477.CrossRefGoogle Scholar
  29. 29.
    Sweryda-Krawiec B, Devaraj H, Jacob G, Hickman JJ (2004) A new interpretation of serum albumin surface passivation. Langmuir 20: 2054–2056.CrossRefGoogle Scholar
  30. 30.
    Cachet H, Folcher G, Haskouri S, Tribollet B, Festy D (2004) Protection antisalissure, active et passive, d’ un film transparent de dioxyde d’ étain par voie électrochimique. Mat. & Tech. 7–8: 1–4.Google Scholar
  31. 31.
    Debiemme-Chouvy C, Haskouri S, Cachet H (2007) Study by XPS of the chlorination of proteins aggregated onto tin dioxide during electrochemical production of hypochlorous acid. Appl. Surf. Sci. 253: 5506–5510.CrossRefGoogle Scholar
  32. 32.
    Debiemme-Chouvy C, Hua Y, Hui F, Duval JL, Cachet H (2011) Electrochemical treatments using tin oxide anode to prevent biofouling. Electrochim. Acta 56: 10364–10370.Google Scholar
  33. 33.
    Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum-albumin by Esims and Frit-Fab Lc Ms. Biochem. Biophys. Res. Comm. 173: 639–646.CrossRefGoogle Scholar
  34. 34.
    Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14: 1453–1464.CrossRefGoogle Scholar
  35. 35.
    Pattison DI, Davies MJ (2004) Kinetic analysis of the reactions of hypobromous acid with protein components: Implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochem. 43: 4799–4809.CrossRefGoogle Scholar
  36. 36.
    Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K (1970) Molecular spectroscopy by means of ESCA [electron spectroscopy for chemical analysis]. II. Sulfur compounds. Correlation of electron binding energy with structure. Phys. Scr. 1: 286–298.CrossRefGoogle Scholar
  37. 37.
    Castner DG, Hinds K, Grainger DW (1996) X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 12: 5083–5086.CrossRefGoogle Scholar
  38. 38.
    Schick GA, Sun ZQ (1994) Spectroscopic characterization of sulfonyl chloride immobilization on silica. Langmuir 10: 3105–3110.CrossRefGoogle Scholar
  39. 39.
    Peskin AV, Winterbourn CC (2001) Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic. Biol Med. 30: 572–579.CrossRefGoogle Scholar
  40. 40.
    Kettle AJ, Winterbourn CC (1994) Assays for the Chlorination Activity of Myeloperoxidase. Methods Enzymol. 502–512.CrossRefGoogle Scholar
  41. 41.
    Sun XB, Cao ZB, Porteous N, Sun YY (2010) Amine, melamine, and amide n-halamines as antimicrobial additives for polymers. Ind. Eng. Chem. Res. 49: 11206–11213.CrossRefGoogle Scholar
  42. 42.
    Hawkins CL, Pattison DI, Davies MJ (2003) Amino Acids 25: 259–263.CrossRefGoogle Scholar
  43. 43.
    Senthilmohan R, Kettle AJ (2006) Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch. Biochem. Biophys. 445: 235–244.CrossRefGoogle Scholar
  44. 44.
    Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases. Curr. Med. Chem. 13: 3271–3290.CrossRefGoogle Scholar
  45. 45.
    Prutz WA (1998) Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. Arch. Biochem. Biophys. 349: 183–191.CrossRefGoogle Scholar
  46. 46.
    Pattison DI, Davies MJ (2005) Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochem. 44: 7378–7387.CrossRefGoogle Scholar
  47. 47.
    Hawkins CL, Davies MJ (2005) The role of aromatic amino acid oxidation, protein unfolding, and aggregation in the hypobromous acid-induced inactivation of trypsin inhibitor and lysozyme. Chem. Res. Toxicol. 18: 1669–1677.CrossRefGoogle Scholar
  48. 48.
    Winterbourn CC, Brennan SO (1997) Characterization of the oxidation products of the reaction between reduced glutathione and hypochlorous acid. Biochem. J. 326: 87–92.Google Scholar
  49. 49.
    Pullar JM, Vissers MCM, Winterbourn CC (2001) Glutathione oxidation by hypochlorous acid in endothelial cells produces glutathione sulfonamide as a major product but not glutathione disulfide. J. Biological Chem. 276: 22120–22125.CrossRefGoogle Scholar
  50. 50.
    Fu XY, Mueller DM, Heinecke JW (2002) Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and Sulfonamides by hypochlorous acid: A potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase. Biochem. 41: 1293–1301.CrossRefGoogle Scholar
  51. 51.
    Haskouri S, Cachet H, Duval JL, Debiemme-Chouvy C (2006) First evidence of the antibacterial property of SnO2 surface electrochemically modified in the presence of bovine serum albumin and chloride ions. Electrochem. Comm. 8: 1115–1118.CrossRefGoogle Scholar
  52. 52.
    Haskouri S. University Paris 7. (2006) Thesis.Google Scholar
  53. 53.
    Chen ZB, Luo J, Sun YY (2007) Biocidal efficacy, biofilm-controlling function, and controlled release effect of chloromelamine-based bioresponsive fibrous materials. Biomaterials 28: 1597–1609.CrossRefGoogle Scholar
  54. 54.
    Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Textile Res. J. 78: 60–72.CrossRefGoogle Scholar
  55. 55.
    Liang J, Wu R, Huang TS, Worley SD (2005) Polymerization of a hydantoinylsiloxane on particles of silicon dioxide to produce a biocidal sand. J. Appl. Polym. Sci. 97: 1161–1166.CrossRefGoogle Scholar
  56. 56.
    Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang TS (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27: 2495–2501.CrossRefGoogle Scholar
  57. 57.
    Kocer HB, Akdag A, Ren XH, Broughton RM, Worley SD, Huang TS (2008) Effect of alkyl derivatization on several properties of N-Halamine antimicrobial siloxane coatings. Ind. Eng. Chem. Res. 47: 7558–7563.CrossRefGoogle Scholar
  58. 58.
    Ahmed AESI, Hay JN, Bushell ME, Wardell JN, Cavalli G (2009) Optimizing halogenation conditions of N-Halamine polymers and investigating mode of bactericidal action. J. Appl. Polym. Sci. 113: 2404–2412.CrossRefGoogle Scholar
  59. 59.
    Debiemme-Chouvy C, Unpublished results. Study of antibacterial properties of tin dioxyde electrochemically modified in the presence of chlorides and proteins.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Interfaces et Systèmes Electrochimiques, UPR 15 du CNRSUniversité P. et M. CurieParisFrance

Personalised recommendations