Advertisement

Silver Nanoparticle Antimicrobials and Related Materials

  • Hua Zhang
  • Meng Wu
  • Ayusman Sen
Chapter

Abstract

Silver is an effective antimicrobial agent which was serendipitously discovered long before the concept of microorganism was even known. It has been added as an effective component in many therapeutic medications, as well as antibacterial materials. In this chapter, we first briefly introduce the history of silver as a primitive germicide. Then, we review the antibacterial mechanisms and the evaluation methods for this ancient antimicrobial from a modern perspective. In the third part of this chapter, a variety of inorganic and polymeric silver-based antibacterial materials, including glass, ceramics, textiles, polymers, films and coatings, are covered. Some challenging issues such as material biofouling and the emergence of silver-resistant bacteria and “superbugs” are discussed in the final section. Several solutions are proposed based on the latest progress in antibacterial polymers and anti-fouling coatings. This chapter should provide our readers with a comprehensive and up-to-date overview of silver-based nano-antimicrobial materials.

Keywords

Minimum Inhibitory Concentration Silver Nanoparticles Activate Carbon Fiber Scrub Typhus Antibacterial Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Russell AD, Hugo WB (1994) Antimicrobial Activity and Action of Silver. Prog Med Chem 31: 351-370. doi: 10.1016/S0079-6468(08)70024-9
  2. 2.
    Hill JW (2009) Colloidal silver medical uses, toxicology & manufacture, 3rd ed. Clear Springs Press, Rainier, WA (USA) ISBN: 1884979084Google Scholar
  3. 3.
    Ravelin J (1869) Chemistry of vegetation. Sic Nat 11:93–102.Google Scholar
  4. 4.
    Von Naegelli V (1893) Deut schr Schweiz Naturforsch Ges 33:174–182.Google Scholar
  5. 5.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: Review of the literature. Burn 33:139–148. doi:  10.1016/j.burns.2006.06.010 CrossRefGoogle Scholar
  6. 6.
    Chappel JB, Greville GD (1954) Effect of silver ions on mitochondrial adenosine triphosphatase. Nature 174:930–931. doi:  10.1038/174930b0 CrossRefGoogle Scholar
  7. 7.
    Cecil R, McPhee JR (1959) The sulfur chemistry of proteins. Adv Protein Chem 14:255–389. doi:  10.1016/S0065-3233(08)60613-0 CrossRefGoogle Scholar
  8. 8.
    Rogers KS (1972) Variable sulfhydryl activity toward silver nitrate by reduced glutathione and alcohol, glutamate and lactate dehydrogenases. Biochim Biophys Acta 263:309–314. doi:  10.1016/0005-2795(72)90084-0 Google Scholar
  9. 9.
    Foster TJ (1983) Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Mol Biol Rev 47:361–409.Google Scholar
  10. 10.
    Rayman ML, Lo TCY, Sanwal BD (1972) Transport of succinate in Escherichia coli: II. Characteristics of uptake and energy coupling with transport in membrane preparations. J Biol Chem 247:6332–6339.Google Scholar
  11. 11.
    Shaw WHR (1954) The inhibition of urease by various metal ions. J Am Chem Soc 76:2160–2163. doi:  10.1021/ja01637a034 CrossRefGoogle Scholar
  12. 12.
    Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223. doi:  10.1021/bi0508542 CrossRefGoogle Scholar
  13. 13.
    Rosenberg H, Cox GB, Butlin JD, Gutowski SJ (1975) Metabolite transport in mutants of Escherichia coli K12 Defective in electron transport and coupled phosphorylation. Biochem J 146:417–423.Google Scholar
  14. 14.
    Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13.Google Scholar
  15. 15.
    Duane M, Dekker CA, Schachmen HK (1966) Complexes of silver ion with natural and synthetic polynucleotides. Biopolymers 4:51–76. doi:  10.1002/bip.1966.360040107 CrossRefGoogle Scholar
  16. 16.
    Jensen RH, Davidson N (1966) Spectrophotometric, potentiometric, and density gradient ultracentrifugation studies of the binding of silver ion by DNA. Biopolymers 4:17–32. doi:  10.1002/bip.1966.360040104 CrossRefGoogle Scholar
  17. 17.
    Yakabe Y, Sano T, Ushio H, Yasunaga T (1980) Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chem Lett 4:373–376. doi:  10.1246/cl.1980.373 CrossRefGoogle Scholar
  18. 18.
    Richard H, Screiber JP, Duane M (1973) Interactions of metallic ions with DNA V DNA renaturation mechanism in the presence of Cu2+. Biopolymers 12:1–10. doi:  10.1002/bip.1973.360120102 CrossRefGoogle Scholar
  19. 19.
    Izatt RM, Christensen JJ, Rytting JH (1971) Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev 71:439–481. doi:  10.1021/cr60273a002 CrossRefGoogle Scholar
  20. 20.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668. doi:  10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2–3 CrossRefGoogle Scholar
  21. 21.
    Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20:085102. doi:  10.1088/0957-4484/20/8/085102 CrossRefGoogle Scholar
  22. 22.
    Mendis E, Rajapakse N, Byun H-G, Kim S-K (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 77:2166–2178. doi:  10.1016/j.lfs.2005.03.016 CrossRefGoogle Scholar
  23. 23.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–366. doi:  10.1016/0891-5849(94)00159-H CrossRefGoogle Scholar
  24. 24.
    Yoon K-Y, Byeon JH, Park J-H, Ji JH, Bae GN, Hwang J (2008) Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ Eng Sci 25:289–294. doi:  10.1089/ees.2007.0003 CrossRefGoogle Scholar
  25. 25.
    Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. doi:  10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  26. 26.
    Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032. doi:  10.1016/j.watres.2008.12.002 CrossRefGoogle Scholar
  27. 27.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:  10.1088/0957-4484/16/10/059 CrossRefGoogle Scholar
  28. 28.
    Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against Escherichia coli. J Mater Sci Technol 24:192–196.Google Scholar
  29. 29.
    Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750. doi:  10.1002/smll.200700954 CrossRefGoogle Scholar
  30. 30.
    Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G-Y (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796. doi:  10.1021/la991013x CrossRefGoogle Scholar
  31. 31.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on Escherichia coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi:  10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  32. 32.
    Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protocols 3:163–175. doi:  10.1038/nprot.2007.521 CrossRefGoogle Scholar
  33. 33.
    Clinical and Laboratory Standards Institute (2006) Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI document M100-S16CLSI, Wayne.Google Scholar
  34. 34.
    Thomson KS, Moland ES (2001) Cefepime, Piperacillin-Tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 45:3548–3554. doi:  10.1128/aac.45.12.3548-3554.2001 CrossRefGoogle Scholar
  35. 35.
    Bauer AW, Perry DM, Kirby WMM (1959) Single-disk antibiotic-sensitivity testing of Staphylococci: An analysis of technique and results. Arch Int Med 104:208–216.CrossRefGoogle Scholar
  36. 36.
    Boyle VJ, Fancher ME, Ross RW, Jr. (1973) Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrob Agents Chemother 3:418–424. doi:  10.1128/aac.Google Scholar
  37. 37.
    Innocenzi P, Kozuka H (1994) Methyltriethoxysilane-derived sol-gel coatings doped with silver metal particles. J Sol-Gel Sci Technol 3:229–233. doi:  10.1007/bf00486561 CrossRefGoogle Scholar
  38. 38.
    Breitscheidel B, Zieder J, Schubert U (1991) Metal complexes in inorganic matrixes. 7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chem Mater 3:559–566. doi:  10.1021/cm00015a037 CrossRefGoogle Scholar
  39. 39.
    Brusilovsky D, Eyal M, Reisfeld R (1988) Absorption spectra, energy dispersive analysis of X-rays and transmission electron microscopy of silver particles in sol-gel glass films. Chem Phys Lett 153:203–209. doi:  10.1016/0009-2614(88)85213-8 CrossRefGoogle Scholar
  40. 40.
    Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials 21:393–398. doi:  10.1016/s0142-9612(99)00201-x CrossRefGoogle Scholar
  41. 41.
    Zhang F, Wolf GK, Wang X, Liu X (2001) Surface properties of silver doped titanium oxide films. Surf Coat Technol 148:65–70. doi:  10.1016/s0257-8972(01)01305-6 CrossRefGoogle Scholar
  42. 42.
    Necula BS, Fratila-Apachitei LE, Zaat SAJ, Apachitei I, Duszczyk J (2009) In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater 5:3573–3580. doi:  10.1016/j.actbio.2009.05.010 CrossRefGoogle Scholar
  43. 43.
    Khalilpour P, Lampe K, Wagener M, Stigler B, Heiss C, Ullrich MS, Domann E, Schnettler R, Alt V (2010) Ag/SiOxCyplasma polymer coating for antimicrobial protection of fracture fixation devices. J Biomed Mater Res B: Appl Biomater 94B:196–202. doi:  10.1002/jbm.b.31641 Google Scholar
  44. 44.
    Sun S-Q, Sun B, Zhang W, Wang D (2008) Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method. Bull Mater Sci 31:61–66.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17:95–104. doi:  10.1039/b611740f CrossRefGoogle Scholar
  46. 46.
    Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol A: Chem 187:53–63. doi:  10.1016/j.jphotochem.2006.09.014 CrossRefGoogle Scholar
  47. 47.
    Mahltig B, Fischer A (2010) Inorganic/organic polymer coatings for textiles to realize water repellent and antimicrobial properties-A study with respect to textile comfort. J Polym Sci, Part B: Polym Phys 48:1562–1568. doi:  10.1002/polb.22051 CrossRefGoogle Scholar
  48. 48.
    Tan S-X, Tan S-Z, Chen J-X, Liu Y-L, Yuan D-S (2009) Preparation and properties of antibacterial TiO2@C/Ag core–shell composite. Science and Technology of Advanced Materials 10:045002. doi:  10.1088/1468-6996/10/4/045002 CrossRefGoogle Scholar
  49. 49.
    Min S-H, Yang J-H, Kim JY, Kwon Y-U (2010) Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite. Microporous Mesoporous Mater 128:19–25. doi:  10.1016/j.micromeso.2009.07.020 CrossRefGoogle Scholar
  50. 50.
    Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92:37–42. doi:  10.1016/s0162-0134(02)00489-0 CrossRefGoogle Scholar
  51. 51.
    Yang F, Wu K, Liu M, Lin W, Hu M (2009) Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material. Mater Chem Phys 113:474–479. doi:  10.1016/j.matchemphys.2008.07.126 CrossRefGoogle Scholar
  52. 52.
    Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers. Environ Sci Technol 42 (4):1251–1255. doi:  10.1021/es0720199 CrossRefGoogle Scholar
  53. 53.
    Rao CRK, Trivedi DC (2005) Synthesis and characterization of fatty acids passivated silver nanoparticles – their interaction with PPy. Synth Met 155:324–327. doi:  10.1016/j.synthmet. 2005.01.038CrossRefGoogle Scholar
  54. 54.
    Zhang W, Qiao X, Chen J, Wang H (2006) Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J Colloid Interface Sci 302:370–373. doi:  10.1016/j.jcis.2006.06.035 CrossRefGoogle Scholar
  55. 55.
    Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal-chitosan nanocomposites. Colloids Surf B Biointerfaces 39:31–37. doi:  10.1016/j.colsurfb.2004.08.014 CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) Hyperbranched poly (amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112:2330–2336. doi:  10.1021/jp075436g CrossRefGoogle Scholar
  57. 57.
    Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná Tj, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:  10.1021/jp063826h
  58. 58.
    Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. doi:  10.1021/nn102272n CrossRefGoogle Scholar
  59. 59.
    Holtz RD, Filho AGS, Brocchi M, Martins D, Durán N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102. doi:  10.1088/0957-4484/21/18/185102 CrossRefGoogle Scholar
  60. 60.
    Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681. doi:  10.1021/bm800574x CrossRefGoogle Scholar
  61. 61.
    Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961. doi:  10.1039/B703034G CrossRefGoogle Scholar
  62. 62.
    Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol−gel method. Environ Sci Technol 43:2905–2910. doi:  10.1021/es803450f CrossRefGoogle Scholar
  63. 63.
    Li Y, Hindi K, Watts KM, Taylor JB, Zhang K, Li Z, Hunstad DA, Cannon CL, Youngs WJ, Wooley KL (2010) Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics. Chem Commun 46:121–123. doi:  10.1039/B916559B CrossRefGoogle Scholar
  64. 64.
    Sanpo N, Tan ML, Cheang P, Khor KA (2008) Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating. J Therm Spray Technol 18:10–15. doi:  10.1007/s11666-008-9283-0 CrossRefGoogle Scholar
  65. 65.
    Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348. doi:  10.1002/(sici)1521-3927(20000401)21:7<319::aid-marc319>3.0.co;2–7 CrossRefGoogle Scholar
  66. 66.
    Decher G, Schlenoff JB (2003) Multilayer thin films-sequential assembly of nanocomposite materials. Wiley-VCH, WeinheimGoogle Scholar
  67. 67.
    Grunlan JC, Choi JK, Lin A (2005) Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6:1149–1153. doi:  10.1021/bm049528c CrossRefGoogle Scholar
  68. 68.
    Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20 (9):1619–1623. doi:  10.1002/adma.200702378 CrossRefGoogle Scholar
  69. 69.
    Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823. doi:  10.1021/la0622166 CrossRefGoogle Scholar
  70. 70.
    Collier JH, Camp JP, Hudson TW, Schmidt CE (2000) Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J Biomed Mater Res 50:574–584. doi:  10.1002/(sici)1097-4636(20000615)50:4<574::aid-jbm13>3.0.co;2-i CrossRefGoogle Scholar
  71. 71.
    Ignatova M, Labaye D, Lenoir S, Strivay D, Jerome R, Jerome C (2003) Immobilization of silver in polypyrrole/polyanion composite coatings: preparation, characterization, and antibacterial activity. Langmuir 19:8971–8979. doi:  10.1021/la034968v CrossRefGoogle Scholar
  72. 72.
    Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241. doi:  10.1038/nmat2099 CrossRefGoogle Scholar
  73. 73.
    Sambhy V, Peterson BR, Sen A (2008) Multifunctional silane polymers for persistent surface derivatization and their antimicrobial properties. Langmuir 24:7549–7558. doi:  10.1021/la800858z CrossRefGoogle Scholar
  74. 74.
    Kickhoefen B, Wokalek H, Scheel D, Ruh H (1986) Chemical and physical properties of a hydrogel wound dressing. Biomaterials 7:67–72. doi:  10.1016/0142-9612(86)90092-x CrossRefGoogle Scholar
  75. 75.
    Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) Hydrogel-silver nanoparticle composites: A new generation of antimicrobials. J Appl Polym Sci 115:1199–1207. doi:  10.1002/app.31249 CrossRefGoogle Scholar
  76. 76.
    Ahmed EM, Aggor FS (2010) Swelling kinetic study and characterization of crosslinked hydrogels containing silver nanoparticles. J Appl Polym Sci 117:2168–2174. doi:  10.1002/app.31934 Google Scholar
  77. 77.
    Ilić V, Sˇaponjić Z, Vodnik V, Lazović Sa, Dimitrijević S, Jovancˇić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293. doi:  10.1021/ie1001313
  78. 78.
    Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) Characterization of antibacterial silver coated yarns. J Mater Sci Mater Med 20:2361–2366. doi:  10.1007/s10856-009-3796-z CrossRefGoogle Scholar
  79. 79.
    Parikh DV, Fink T, DeLucca AJ, Parikh AD (2011) Absorption and swelling characteristics of silver (I) antimicrobial wound dressings. Textile Research Journal 81 (5):494–503. doi:  10.1177/0040517510380778 CrossRefGoogle Scholar
  80. 80.
    Mariscal A, Lopez-Gigosos R, Carnero-Varo M, Fernandez-Crehuet J (2011) Antimicrobial effect of medical textiles containing bioactive fibres. Eur J Clin Microbiol Amp; Infect Dis 30(2):227–232. doi:  10.1007/s10096-010-1073-1 Google Scholar
  81. 81.
    Falletta E, Bonini M, Fratini E, Lo NA, Pesavento G, Becheri A, Lo NP, Canton P, Baglioni P (2008) Clusters of poly (acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:  10.1021/jp8035814 CrossRefGoogle Scholar
  82. 82.
    Dubas S, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf Physicochem Eng Aspects 289:105–109. doi:  10.1016/j.colsurfa.2006.04.012 CrossRefGoogle Scholar
  83. 83.
    Chen CC, Wang CC, Yeh JT (2009) Improvement of odor elimination and anti-bacterial Activity of polyester fabrics finished with composite emulsions of nanometer titanium dioxide-silver particles-water-borne polyurethane. Tex Res J 80:291–300. doi:  10.1177/0040517508100626 CrossRefGoogle Scholar
  84. 84.
    Shuhua W, Wensheng H, Liqiao W, Jinming D, Husheng J, Xuguang L, Bingshe X (2009) Structure and properties of composite antibacterial PET fibers. J Appl Polym Sci 112:1927–1932. doi:  10.1002/app.29672 CrossRefGoogle Scholar
  85. 85.
    Ahmadi Z, Ashjari M, Hosseini R, Nia JR (2009) Synthesis and morphological study of nanoparticles Ag/TiO2 ceramic and bactericidal investigation of polypropylene-Ag/TiO2 composite. J Inorg Organomat P 19:322–327. doi:  10.1007/s10904-009-9268-6 CrossRefGoogle Scholar
  86. 86.
    Wu C-S, Liao H-T (2011) Antibacterial activity and antistatic composites of polyester/Ag-SiO2 prepared by a sol–gel method. J Appl Polym Sci 121:2193–2201. doi:  10.1002/app.33823 CrossRefGoogle Scholar
  87. 87.
    Guggenbichler J, Böswald M, Lugauer S, Krall T (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27 S16-S23. doi:  10.1007/bf02561612 CrossRefGoogle Scholar
  88. 88.
    Weitman R, Eames W (1975) Plaque accumulation on composite surfaces after various finising procedures. J Am Dent Assoc 91:101–106.Google Scholar
  89. 89.
    Jedrychowski JR, Caputo AA, Kerper S (1983) Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil 10:373–381. doi:  10.1111/j.1365-2842.1983.tb00133.x CrossRefGoogle Scholar
  90. 90.
    Kassaee MZ, Akhavan A, Sheikh N, Sodagar A (2008) Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci 110:1699–1703. doi:  10.1002/app.28762 CrossRefGoogle Scholar
  91. 91.
    Yoshida K, Tanagawa M, Atsuta M (1999) Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 47:516–522. doi:  10.1002/(sici)1097-4636(19991215)47:4<516::aid-jbm7>3.0.co;2-e CrossRefGoogle Scholar
  92. 92.
    Gail Larkin M, Robert CM, Cyrus CH, Morton NS (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin: A new treat in burn units? The Lancet 305:235–240. doi:  10.1016/S0140-6736(75)91138-1 CrossRefGoogle Scholar
  93. 93.
    Russel AD, Chopra I (1990) Understanding antibacterial action and resistance. Ellis Horwood, ChichesterGoogle Scholar
  94. 94.
    Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402Google Scholar
  95. 95.
    Davis IJ, Richards H, Mullany P (2005) Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth. Oral Microbiol Immunol 20:191–194. doi:  10.1111/j.1399-302X.2005. 00218.xCrossRefGoogle Scholar
  96. 96.
    Silver S, Phung L (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605. doi:  10.1007/s10295-005-0019-6 CrossRefGoogle Scholar
  97. 97.
    Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789. doi:  10.1146/annurev.micro.50.1.753 CrossRefGoogle Scholar
  98. 98.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. doi:  10.1016/s0168-6445(03)00047-0 CrossRefGoogle Scholar
  99. 99.
    Gupta A, Matsui K, Lo J-F, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188. doi:  10.1038/5545 CrossRefGoogle Scholar
  100. 100.
    Silver S, Phung L, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634. doi:  10.1007/s10295-006-0139-7 CrossRefGoogle Scholar
  101. 101.
    Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Perdreau FS, Peters G, Waldvogel FA (1988) Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701. doi:  10.1093/infdis/158.4.693 CrossRefGoogle Scholar
  102. 102.
    Vaudaux P, Pittet D, Haeberli A, Huggler E, Nydegger UE, Lew DP, Waldvogel FA (1989) Host factors selectively increase staphylococcal adherence on inserted catheters: A role for fibronectin and fibrinogen or fibrin. J Infect Dis 160:865–875. doi:  10.1093/infdis/160.5.865 CrossRefGoogle Scholar
  103. 103.
    Toy PT, Lai LW, Drake TA, Sande MA (1985) Effect of fibronectin on adherence of Staphylococcus aureus to fibrin thrombi in vitro. Infect Immun 48:83–86.Google Scholar
  104. 104.
    Vaudaux P, Suzuki R, Waldvogel FA, Morgenthaler JJ, Nydegger UE (1984) Foreign body infection: Role of fibronectin as a ligand for the adherence of Staphylococcus aureus. J Infect Dis 150:546–553. doi:  10.1093/infdis/150.4.546 CrossRefGoogle Scholar
  105. 105.
    Vaudaux PE, Waldvogel FA, Morgenthaler JJ, Nydegger UE (1984) Adsorption of fibronectin onto polymethylmethacrylate and promotion of Staphylococcus aureus adherence. Infect Immun 45:768–774.Google Scholar
  106. 106.
    Francois P, Schrenzel J, Stoerman-Chopard C, Favre H, Herrmann M, Foster TJ, Lew DP, Vaudaux P (2000) Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. J Lab Clin Med 135:32–42. doi:  10.1016/s0022-2143(00)70018-7 CrossRefGoogle Scholar
  107. 107.
    Cheung AL, Fischetti VA (1990) The role of fibrinogen in Staphylococcal adherence to catheters in vitro. J Infect Dis 161:1177–1186. doi:  10.1093/infdis/161.6.1177 CrossRefGoogle Scholar
  108. 108.
    McDevitt D, Francois P, Vaudaux P, Foster TJ (1994) Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237–248. doi:  10.1111/j.1365-2958.1994.tb00304.x CrossRefGoogle Scholar
  109. 109.
    Chhatwal GS, Preissner KT, Muller-Berghaus G, Blobel H (1987) Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun 55:1878–1883Google Scholar
  110. 110.
    Liang OD, Maccarana M, Flock J-I, Paulsson M, Preissner KT, Wadström T (1993) Multiple interactions between human vitronectin and Staphylococcus aureus. Biochim Biophys Acta (BBA) – Mol Basis Dis 1225:57–63. doi:  10.1016/0925-4439(93)90122-h Google Scholar
  111. 111.
    Herrmann M, Suchard SJ, Boxer LA, Waldvogel FA, Lew PD (1991) Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun 59:279–288Google Scholar
  112. 112.
    Herrmann M, Hartleib J, Kehrel B, Montgomery RR, Sixma JJ, Peters G (1997) Interaction of von Willebrand Factor with Staphylococcus aureus. J Infect Dis 176:984–991. doi:  10.1086/516502 CrossRefGoogle Scholar
  113. 113.
    Que Y-A, Haefliger J-A, Piroth L, François P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, Moreillon P (2005) Fibrinogen and fibronectin binding cooperate for valve infection and invasion in. J Exp Med 201:1627–1635. doi:  10.1084/jem.20050125 CrossRefGoogle Scholar
  114. 114.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Micro 2:95–108. doi:  10.1038/nrmicro821 CrossRefGoogle Scholar
  115. 115.
    Musk DJ, Hergenrother PJ (2006) Chemical countermeasures for the control of bacterial biofilms: effective compounds and promising targets. Curr Med Chem 13:2163–2177CrossRefGoogle Scholar
  116. 116.
    Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by Methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846Google Scholar
  117. 117.
    Kuehn BM (2007) MRSA Infections Rise. J Am Med Assoc 298:1389. doi:  10.1001/jama.298.12.1389-a Google Scholar
  118. 118.
    Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta (BBA) – Biomembranes 1462:1–10. doi:  10.1016/s0005-2736(99)00197-2
  119. 119.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi:  10.1038/415389a CrossRefGoogle Scholar
  120. 120.
    Yang L, Weiss TM, Lehrer RI, Huang HW (2000) Crystallization of antimicrobial pores in membranes: Magainin and Protegrin. Biophys J 79:2002–2009. doi:  10.1016/S0006-3495(00)76448-4 CrossRefGoogle Scholar
  121. 121.
    Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by [alpha]-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochi Biophys Acta (BBA) – Biomembranes 1462:55–70. doi:  10.1016/s0005-2736(99)00200-x
  122. 122.
    Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L (2001) The antibacterial peptide Pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026. doi:  10.1021/bi002656a CrossRefGoogle Scholar
  123. 123.
    Bierbaum G, Sahl H-G (1985) Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141:249–254. doi:  10.1007/bf00408067 CrossRefGoogle Scholar
  124. 124.
    Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472. doi:  10.1016/j.coph.2006. 04.006CrossRefGoogle Scholar
  125. 125.
    Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang Y-Y (2011) Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem 3:409–414. doi:  10.1038/nchem.1012 CrossRefGoogle Scholar
  126. 126.
    Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808. doi:  10.1021/ja061442z CrossRefGoogle Scholar
  127. 127.
    Langmuir I (1938) The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J Chem Phys 6:873–896. doi:  10.1063/1.1750183 CrossRefGoogle Scholar
  128. 128.
    Derjaguin BV, Churaev NV (1974) Structural component of disjoining pressure. J Colloid Interface Sci 49:249–255. doi:  10.1016/0021-9797(74)90358-0 CrossRefGoogle Scholar
  129. 129.
    LeNeveu D, Rand R, Gingell D, Parsegian V (1976) Apparent modification of forces between lecithin bilayers. Science 191:399–400. doi:  10.1126/science.1246623 CrossRefGoogle Scholar
  130. 130.
    Harris JM (1992) Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum Press, New YorkGoogle Scholar
  131. 131.
    Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE (1998) Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102:426–436. doi:  10.1021/jp972635z CrossRefGoogle Scholar
  132. 132.
    Li L, Chen S, Zheng J, Ratner BD, Jiang S (2005) Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. J Phys Chem B 109:2934–2941. doi:  10.1021/jp0473321 CrossRefGoogle Scholar
  133. 133.
    Ma H, Wells M, Beebe TP, Chilkoti A (2006) Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold. Adv Funct Mater 16:640–648. doi:  10.1002/adfm.200500426 CrossRefGoogle Scholar
  134. 134.
    Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721. doi:  10.1021/ja00076a032 CrossRefGoogle Scholar
  135. 135.
    Ma H, Li D, Sheng X, Zhao B, Chilkoti A (2006) Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Langmuir 22:3751–3756. doi:  10.1021/la052796r CrossRefGoogle Scholar
  136. 136.
    Luk Y-Y, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608. doi:  10.1021/la0004653 CrossRefGoogle Scholar
  137. 137.
    Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343. doi:  10.1021/la010552a CrossRefGoogle Scholar
  138. 138.
    Shen MC, Martinson L, Wagner MS, Castner DG, Ratner BD, Horbett TA (2002) PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: In vitro and in vivo studies. J Biomater Sci Polym Ed 13:367–390. doi:  10.1163/156856202320253910 CrossRefGoogle Scholar
  139. 139.
    Chen S, Zheng J, Li L, Jiang S (2005) Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc 127:14473–14478. doi:  10.1021/ja054169u CrossRefGoogle Scholar
  140. 140.
    He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S (2008) Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 24:10358–10364. doi:  10.1021/la8013046 CrossRefGoogle Scholar
  141. 141.
    Chang Chung Y, Hong Chiu Y, Wei Wu Y, Tai Tao Y (2005) Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials 26:2313–2324. doi:  10.1016/j.biomaterials.2004.06.043 CrossRefGoogle Scholar
  142. 142.
    Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199. doi:  10.1016/j.biomaterials.2007.05.041 CrossRefGoogle Scholar
  143. 143.
    Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190. doi:  10.1021/cr020371t CrossRefGoogle Scholar
  144. 144.
    Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9:1357–1361. doi:  10.1021/bm701301s CrossRefGoogle Scholar
  145. 145.
    Yang W, Xue H, Li W, Zhang J, Jiang S (2009) Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 25:11911–11916. doi:  10.1021/la9015788 CrossRefGoogle Scholar
  146. 146.
    Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30:5234–5240. doi:  10.1016/j.biomaterials.2009.05.058 CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations