Skip to main content

Inference Processes in Decision Support Systems with Incomplete Knowledge

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6954)


Authors propose a new approach in the optimization of inference processes in decision support systems with incomplete knowledge. The idea is based on clustering large set of rules from knowledge bases as long as it is necessary to find a relevant rule as quickly as possible. This work is highly focused on the results of experiments regarding the influence of Agnes’ algorithm parameters on the quality of the clustering process. Additionally, the authors present the results of the experiments regarding the optimal amount of groups formed by decision rules.


  • cluster analysis
  • clustering
  • decision support systems
  • incomplete knowledge

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abonyi, J., Feil, B.: Cluster Analysis for Data Mining and System Identification. Birkhäuser Verlag AG, Basel (2007)

    MATH  Google Scholar 

  2. Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  3. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall, New Jersey (1988)

    MATH  Google Scholar 

  4. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    CrossRef  MATH  Google Scholar 

  5. Myatt, G.J.: Making Sense of Data A Practical Guide to Exploratory Data Analysis and Data Mining. John Wiley and Sons, Inc., New Jersey (2007)

    MATH  Google Scholar 

  6. Nowak-Brzezińska, A., Wakulicz-Deja, A., Simiński, R.: Knowledge representation for composited knowledge base. Intelligent Information Systems (2008)

    Google Scholar 

  7. Salton, G.: Automatic Information Organization and Retreival. McGraw-Hill, New York (1975)

    Google Scholar 

  8. Cios, K.J., Pedrycz, W., Świniarski, R.W., Kurgan, L.A.: Data mining. A Knowledge Discovery Approach. Springer Science+Business Media, Heidelberg

    Google Scholar 

  9. Grzymała-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31(1), 27–39 (1997)

    Google Scholar 

  10. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2010),

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wakulicz-Deja, A., Nowak-Brzezińska, A., Jach, T. (2011). Inference Processes in Decision Support Systems with Incomplete Knowledge. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)