A Variable Precision Covering Generalized Rough Set Model

  • Xinwei Zheng
  • Jian-Hua Dai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6954)

Abstract

The covering generalized rough sets are an improvement of traditional rough set model to deal with more complex practical problems which the traditional one cannot handle. A variable precision extension of a covering generalized rough set model is proposed in this paper. Some properties are investigated.

Keywords

Rough sets covering variable precision rough set model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonikowski, Z., Bryniarski, E., Wybraniec, U.: Extensions and intentions in the rough set theory. Information Science 107, 149–167 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chen, D.G., Wang, C.Z., Hu, Q.H.: A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Information Sciences 177, 3500–3518 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dai, J.H.: Generalization of rough set theory using molecular lattices. Chinese Journal of Computers 27, 1436–1440 (2004) (in Chinese)MathSciNetGoogle Scholar
  4. 4.
    Dai, J.H.: Structure of rough approximations based on molecular lattices. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 69–77. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Dai, J.H.: Logic for Rough Sets with Rough Double Stone Algebraic Semantics. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 141–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dai, J.H.: Rough Algebras and 3-Valued Lukasiewicz Algebras. Chinese Journal of Computers 30, 161–167 (2007) (in Chinese)MathSciNetGoogle Scholar
  7. 7.
    Dai, J.H.: Rough 3-valued algebras. Information Sciences 178, 1986–1996 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dai, J.H.: Generalized rough logics with rough algebraic semantics. International Journal of Cognitive Informatics and Natural Intelligence 4, 35–49 (2010)CrossRefGoogle Scholar
  9. 9.
    Dai, J.H., Chen, W.D., Pan, Y.H.: A minimal axiom group of rough set based on Quasi-ordering. Journal of Zhejiang University Science 7, 810–815 (2004)CrossRefGoogle Scholar
  10. 10.
    Dai, J.H., Chen, W.D., Pan, Y.H.: Sequent caculus system for rough sets based on rough Stone algebras. In: 1st International Conference on Granular Computing, pp. 423–426. IEEE Press, New Jersy (2005)Google Scholar
  11. 11.
    Dai, J.H., Chen, W.D., Pan, Y.H.: Rough Sets and Brouwer-Zadeh Lattices. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 200–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Dai, J.H., Lv, H.F., Chen, W.D., Pan, Y.H.: Two Kinds of Rough Algebras and Brouwer-Zadeh Lattices. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 99–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Dai, J.H., Pan, Y.H.: On rough algebras. Journal of Software 16, 1197–1204 (2005) (in Chinese)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, T.J.: Rough approximation operators in covering approximation spaces. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 174–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, T.Y., Liu, Q.: Rough approximate operators: Axiomatic rough set theory. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 256–260. Springer, Berlin (1994)CrossRefGoogle Scholar
  16. 16.
    Liu, G., Sai, Y.: A comparison of two types of rough sets induced by coverings. International Journal of Approximate Reasoning 50, 521–528 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Liu, R.X., Sun, S.B., Qin, K.Y.: On variable precision covering rough set. Computer Engineering and Application 44, 47–50 (2008) (in Chinese)Google Scholar
  18. 18.
    Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  19. 19.
    Pomykala, J.A.: Approximation Operations in Approximation Space. Bull. Polish Academy of Sciences 35, 653–662 (1987)MathSciNetMATHGoogle Scholar
  20. 20.
    Pomykala, J.A.: On Definability in the Nondeterministic Information System. Bulletin of the Polish Academy of Sciences: Mathematics 36, 193–210 (1988)MathSciNetMATHGoogle Scholar
  21. 21.
    Sun, S.B., Qin, K.Y.: On the Generalization of Variable Precision Covering Rough Set Model. Computer Science 35, 210–213 (2008) (in Chinese)Google Scholar
  22. 22.
    Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximation Reasoning 15, 291–317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 101, 239–259 (1998)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zakowski, W.: Approximations in the space (U,Π). Demonstratio Mathematica 16, 761–769 (1983)MathSciNetMATHGoogle Scholar
  26. 26.
    Zhang, Y.J., Wang, Y.P.: Covering Rough Set Model Based on Variable Precision. Journal of Liaoning Institute of Technology 26, 274–276 (2006) (in Chinese)MATHGoogle Scholar
  27. 27.
    Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ziarko, W.: Variable precision rough sets model. Journal of Computer and Systems Sciences 46, 39–59 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xinwei Zheng
    • 1
  • Jian-Hua Dai
    • 2
  1. 1.Information Science SchoolGuangdong University of Business StudiesGuangzhouChina
  2. 2.School of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations