An Efficient Fuzzy-Rough Attribute Reduction Approach

  • Yuhua Qian
  • Chao Li
  • Jiye Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6954)

Abstract

Fuzzy rough set method provides an effective approach to data mining and knowledge discovery from hybrid data including categorical values and numerical values. However, its time-consumption is very intolerable to analyze data sets with large scale and high dimensionality. In this paper, we propose a strategy to improve a heuristic process of fuzzy-rough feature selection. Experiments show that this modified algorithm is much faster than its original version. It is worth noting that the performance of the modified algorithm becomes more visible when dealing with larger data sets.

Keywords

fuzzy rough sets attribute reduction algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beaubouef, T., Perty, F.E., Arora, G.: Information-theoretic measures of uncertainty for rough sets and rough relational databases. Inf. Sci. 109, 185–195 (1998)CrossRefGoogle Scholar
  2. 2.
    Bhatt, R.B., Gopal, M.: On the compact computational domain of fuzzy-rough sets. Pattern Recognition Lett. 26, 1632–1640 (2005)CrossRefGoogle Scholar
  3. 3.
    Düntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artifi. Intell. 106, 109–137 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hu, Q., Pedrycz, W., Yu, D., Lang, J.: Selecting discrete and continuous features based on neighborhood dicision error minimization. IEEE Trans. Syst. Man Cybern. Part B 40(1), 137–150 (2010)CrossRefGoogle Scholar
  5. 5.
    Hu, Q., Xie, Z.X., Yu, D.R.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40, 3509–3521 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Hu, Q., Yu, D.R., Xie, Z.X.: Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognit. Lett. 27(5), 414–423 (2006)CrossRefGoogle Scholar
  7. 7.
    Hu, X.H., Cercone, N.: Learning in relational databases: a rough set approach. Int. J. Comput. Intell. 11(2), 323–338 (1995)Google Scholar
  8. 8.
    Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches. IEEE Trans. Knowl. Data Eng. 16(12), 1457–1471 (2004)CrossRefGoogle Scholar
  9. 9.
    Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute reduction. IEEE Trans. Fuzzy Syst. 15(1), 73–89 (2007)CrossRefGoogle Scholar
  10. 10.
    Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17(4), 824–838 (2009)CrossRefGoogle Scholar
  11. 11.
    Liang, J.Y., Dang, C.Y., Chin, K.S., Yam Richard, C.M.: A new method for measuring uncertainty and fuzziness in rough set theory. Int. J. Gen. Syst. 31(4), 331–342 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Liang, J.Y., Qian, Y.H.: Information granules and entropy theory in information systems. Science in China Series F: Information Sciences 51(10), 1427–1444 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Liu, X.D., Pedrycz, W., Chai, T.Y., Song, M.L.: The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets. IEEE Trans. Knowl. Data Eng. 21(3), 443–462 (2009)CrossRefGoogle Scholar
  14. 14.
    Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Trans. Syst. Man Cybern. Part B 36(4), 795–805 (2006)CrossRefGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publisher, London (1991)CrossRefMATHGoogle Scholar
  16. 16.
    Pedrycz, W., Bargiela, A.: Granular clustering: a granular signature of data. IEEE Trans. Syst. Man Cybern. Part B 32(2), 212–224 (2002); Pedrycz, W., Kwak, K.: Boosting of granular models. Fuzzy Sets and Systems 157, 2934–2953 (2006)Google Scholar
  17. 17.
    Pedrycz, W., Sosnowski, Z.A.: Designing decision trees with the use of fuzzy granulation. IEEE Trans. Syst. Man Cybern. Part A 3(2), 151–159 (2000)CrossRefGoogle Scholar
  18. 18.
    Qian, Y.H., Liang, J.Y., Pedrycz, W., Dang, C.Y.: Positive approximation: an accelerator for attribute reduction in rough set theory. Artifi. Intell. 174, 597–618 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sen, D., Pal, S.K.: Generalized rough sets, entropy and image ambiguity measures. IEEE Trans. Syst. Man Cybern. Part B 39(1), 117–128 (2009)CrossRefGoogle Scholar
  20. 20.
    Shannon, C.E.: The mathematical theory of communication. The Bell System Technical Journal 27(3-4), 373–423, 623-656 (1948)MathSciNetGoogle Scholar
  21. 21.
    Tang, E.C.C., Chen, D.G., Yeung, D.S., Wang, X.Z., Lee, J.W.T.: Attributes reduction using fuzzy rough sets. IEEE Trans. Fuzzy Syst. 16(5), 1130–1141 (2008)CrossRefGoogle Scholar
  22. 22.
    Wang, X.Z., Tang, E.C.C., Zhao, S.Y., Chen, D.G., Yeung, D.S.: Learning fuzzy rules from fuzzy samples based on rough set technique. Inf. Sci. 177, 4493–4514 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuhua Qian
    • 1
  • Chao Li
    • 1
  • Jiye Liang
    • 1
  1. 1.Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of EducationShanxi UniversityTaiyuanChina

Personalised recommendations