Advertisement

Projective Geometry

  • Thomas H. Otway
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2043)

Abstract

Projective geometry enters the study of partial differential equations of mixed elliptic–hyperbolic type by a very indirect route, beginning with the following geometric variational problem.

Keywords

Black Hole Unit Circle Dirichlet Problem Characteristic Line Projective Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alty, L.J.: Kleinian signature change. Class. Quantum Grav. 11, 2523–2536 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann. Henri Poincaré 4, 1–34 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 8, 12 (2005)Google Scholar
  4. 4.
    Barceló, C., Liberati, S., Sonego, S., Visser, M.: Causal structure of acoustic spacetimes. New J. Phys. 186 (2004)Google Scholar
  5. 5.
    Beltrami, E.: Saggio di interpretazione della geometria non-euclidea. Giornale di Matematiche 6, 284–312 (1868)Google Scholar
  6. 6.
    Beltrami, E.: Teoria fondamentale degli spazii di curvatura costante. Annali Mat. Pura Appl. ser. 2. 2, 232–255 (1868)Google Scholar
  7. 7.
    Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)zbMATHGoogle Scholar
  8. 8.
    Busemann, A.: Infinitesimale Kegelige Uberschallstromungenn Schriften. Deutsche Akad. Lufo. 7B, 105–122 (1943)MathSciNetGoogle Scholar
  9. 9.
    Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. Geometry of the Laplace operator. In: Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, vol. 36, pp. 91–146. American Mathematical Society, Providence (1980)Google Scholar
  10. 10.
    Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Different. Geom. 18, 575–657 (1983)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Darabi, F., Rastkar, A.: A quantum cosmology and discontinuous signature changing classical solutions. Gen. Relat. Gravit. 38, 1355–1366 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dereli, T., Tucker, R.W.: Signature dynamics in general relativity. Class. Quantum Grav. 10, 365–373 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Didenko, V.P.: On the generalized solvability of the Tricomi problem. Ukrain. Math. J. 25, 10–18 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dray, T., Ellis, G.F.R., Hellaby, C.: Note on signature change and Colombeau theory. Gen. Relat. Gravit. 33, 1041–1046 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dray, T., Ellis, G.F.R., Hellaby, C., Manogue,C.A.: Gravity and signature change. Gen. Relat. Gravit. 29, 591–597 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dray, T., Manogue,C.A., Tucker, R.W.: Particle production from signature change. Gen. Relat. Gravit. 23, 967–971 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ellis, G., Sumeruk, A., Coule, D., Hellaby, C.: Change of signature in classical relativity Class. Quantum Grav. 9, 1535–1554 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Embacher, F.: Actions for signature change. Phys. Rev. D 51, 6764–6777 (1995)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Fernando Barbero G., J.: From Euclidean to Lorentzian general relativity: The real way. Phys. Rev. D 54, 1492–1499 (1996)Google Scholar
  20. 20.
    Gaida, I., Hollman, H.R., Stewart, J.M.: Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity. Class. Quantum Grav. 16, 2231–2246 (1999)CrossRefzbMATHGoogle Scholar
  21. 21.
    Gibbons, G.W., Ishibashi, A.: Topology and signature changes in braneworlds. Class. Quantum Grav. 21, 2919–2935 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Gordon, W.: Zur Lichtfortpflanzung nach der Relativitatstheorie. Ann. Phys. Leipzig 72, 421–456 (1923)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gu, C.: On some differential equations of mixed type in n-dimensional spaces [in Russian]. Sci. Sin. 14, 1574–1580 (1965)zbMATHGoogle Scholar
  24. 24.
    Gu, C.: A global study of extremal surfaces in 3-dimensional Minkowski space. In: Gu, C-H, Berger, M., Bryant, R. L. (eds.) Differential Geometry and Differential Equations, (Shanghai 1985) Lecture Notes in Mathematics, vol. 1255, pp. 26–33. Springer, Berlin (1985)Google Scholar
  25. 25.
    Gu, C.: The extremal surfaces in the 3-dimensional Minkowski space. Acta Math. Sin. n. s. 1, 173–180 (1985)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gu, C.: On the mixed partial differential equations in n independent variables, Journées Équat. aux dérivées partielles, pp. 1–2. (1980)Google Scholar
  27. 27.
    Gu, C.: On partial differential equations of mixed type in n independent variables. Commun. Pure Appl. Math. 34, 333–345 (1981)CrossRefzbMATHGoogle Scholar
  28. 28.
    J. B. Hartle, J.B., Hawking, S.W., Wave function of the universe. Phys. Rev. D 28, 2960–2975 (1983)Google Scholar
  29. 29.
    Hayashi, N., Hirata, H.: Local existence in time of small solutions to the elliptic-hyperbolicn Davey-Stewartson system in the usual Sobolev space. Proc. Edinburgh Math. Soc. 40, 563–581 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Hayward, S.A.: Comment on “Failure of standard conservation laws at a classical change of signature,” Phys. Rev. D 52, 7331–7332 (1995)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Hayward, S.A.: Signature change in general relativity. Class. Quantum Grav. 9, 1851–1862 (1992)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Hellaby, C., Dray, T.: Failure of standard conservation laws at a classical change of signature. Phys. Rev. D 49, 5096–5104 (1994)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Hellaby, C., Dray, T.: Reply comment: Comparison of approaches to classical signature change. Phys. Rev. D 52, 7333–7339 (1995)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Heidmann, J.: Relativistic Cosmology, An Introduction. Springer, Berlin (1980)CrossRefzbMATHGoogle Scholar
  35. 35.
    Hellaby, C., Sumeruk, A., Ellis, G.F.R.: Classical signature change in the black hole topology. Int. J. Mod.Phys. D6, 211–238 (1997)MathSciNetGoogle Scholar
  36. 36.
    Hua, L.K.: Geometrical theory of partial differential equations. In: Chern, S.S., Wen-tsün, W. (eds.), Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, pp. 627–654. Gordon and Breach, New York (1982)Google Scholar
  37. 37.
    Hunter, J.K., Tesdall, A.M.: Weak shock reflection. In: Givoli, D., Grote, M.J., Papanicolaou, G.C. (eds.) A Celebration of Mathematical Modeling: The Joseph B. Keller Anniversary Volume, pp. 93–112. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  38. 38.
    Ji, X-H., Chen, D-Q.: Tricomi’s problems of non-homogeneous equation of mixed type in real projective plane. In: Chern, S.S., Wen-tsün, W. (eds.), Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, pp. 1257–1271. Gordon and Breach, New York (1982)Google Scholar
  39. 39.
    Katsanis, T.: Numerical techniques for the solution of symmetric positive linear differential equations. Ph.D. thesis, Case Institute of Technology (1967)Google Scholar
  40. 40.
    Katsanis, T.: Numerical solution of Tricomi equation using theory of symmetric positive differential equations. SIAM J. Numer. Anal. 6, 236–253 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Keller, J.B., Blank, A.: Diffraction and reflection of pulses by wedges and corners. Commun. Pure Appl. Math. 4, 75–94 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Klein, C.: Binary black hole spacetimes with helical Killing vector. Phys. Rev. D 70, 124026 (2004)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Kossowski, M., Kriele, M.: Signature type change and absolute time in general relativity. Class. Quantum Grav. 10, 1157–1164 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Kossowski, M., Kriele, M.: The Einstein equation for signature type changing spacetimes. Proc. R. Soc. London Ser. A. 446, 115–126 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Kriele, M., Martin, J.: Black holes, cosmological singularities and change of signature. Class. Quantum Grav. 12, 503–511 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Liberati, S., Visser, M., Weinfurtner, S.: Naturalness in an emergent analogue spacetime. Phys. Rev. Lett. 96, 151301 (2006)CrossRefGoogle Scholar
  47. 47.
    Lupo, D., Morawetz, C.S., Payne, K.R.: On closed boundary value problems for equations of mixed elliptic-hyperbolic type. Commun. Pure Appl. Math. 60, 1319–1348 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Lupo, D., Morawetz, C.S., Payne, K.R.: Erratum: “On closed boundary value problems for equations of mixed elliptic-hyperbolic type,” [Commun. Pure Appl. Math. 60, 1319–1348 (2007)]. Commun. Pure Appl. Math. 61, 594 (2008)Google Scholar
  49. 49.
    Lupo, D., Payne, K.R.: Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types. Commun. Pure Appl. Math. 56, 403–424 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Magnanini, R., Talenti, G.: Approaching a partial differential equation of mixed elliptic-hyperbolic type. In: Anikonov, Yu.E., Bukhageim, A.L., Kabanikhin, S.I., Romanov, V.G. (eds.) Ill-posed and Inverse Problems, pp. 263–276. VSP, Utrecht (2002)Google Scholar
  51. 51.
    Mars, M., Senovilla, J.M.M., Vera, R.: Signature change on the brane. Phys. Rev. Lett. 86, 4219–4222 (2001)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Mars, M., Senovilla, J.M.M., Vera, R.: Lorentzian and signature changing branes. Phys. Rev. D 76, 044029 (2007)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Mars, M., Senovilla, J.M.M., Vera, R.: Is the accelerated expansion evidence of a forthcoming change of signature? Phys. Rev. D 77, 027501 (2008)CrossRefGoogle Scholar
  54. 54.
    Morawetz, C.S.: A weak solution for a system of equations of elliptic-hyperbolic type. Commun. Pure Appl. Math. 11, 315–331 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Otway, T.H.: Nonlinear Hodge maps. J. Math. Phys. 41, 5745–5766 (2000)zbMATHMathSciNetGoogle Scholar
  56. 56.
    Otway, T.H.: Hodge equations with change of type. Ann. Mat. Pura Appl. 181, 437–452 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Otway, T.H.: Maps and fields with compressible density. Rend. Sem. Mat. Univ. Padova 111, 133–159 (2004)zbMATHMathSciNetGoogle Scholar
  58. 58.
    Otway, T.H.: Harmonic fields on the extended projective disc and a problem in optics. J. Math. Phys. 46, 113501 (2005)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Otway, T.H.: Erratum: “Harmonic fields on the extended projective disc and a problem in optics,” [J. Math. Phys. 46, 113501 (2005)]. J. Math. Phys. 48, 079901 (2007)Google Scholar
  60. 60.
    Otway, T.H.: Variational equations on mixed Riemannian-Lorentzian metrics. J. Geom. Phys. 58, 1043–1061 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Page, D.N.: Susskind’s challenge to the Hartle-Hawking no-boundary proposal and possible resolutions. J. Cosmol. Astropart. Phys. 01 004 (2007)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Payne, K.R.: Singular metrics and associated conformal groups underlying differential operators of mixed and degenerate types. Ann. Mat. Pura Appl. 184, 613–625 (2006)CrossRefGoogle Scholar
  63. 63.
    Schönberg, M.: Classical theory of the point electron. Phys. Rev. 69, 211–224 (1946)CrossRefGoogle Scholar
  64. 64.
    Stewart, J.M.: Signature change, mixed problems and numerical relativity. Class. Quantum Grav. 18, 4983–4995 (2001)CrossRefzbMATHGoogle Scholar
  65. 65.
    Stillwell, J.: Geometry of Surfaces. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  66. 66.
    Stillwell, J.: Sources of Hyperbolic Geometry. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  67. 67.
    Stokes, G.G.: Mathematical and Physical Papers, vol. 5, Appendix. Cambridge University Press, Cambridge (1880–1905)Google Scholar
  68. 68.
    Torre, C.G.: The helically reduced wave equation as a symmetric positive system. J. Math. Phys. 44, 6223–6232 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Vakili, B., Jalalzadeh, S., Sepangi, H.R.: Classical and quantum spinor cosmology with signature change. J. Cosmol. Astropart. Phys. 006 (2005)Google Scholar
  70. 70.
    Weinfurtner, S.E.C.: Analog model for an expanding universe. Gen. Relat. Grav. 37, 1549–1554 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Weinfurtner, S.E.C.: Signature-change events in emergent spacetimes with anisotropic scaling. J. Phys. Conf. Ser. 189, 012046 (2009)CrossRefGoogle Scholar
  72. 72.
    Weinfurtner, S., Liberati, S., Visser, M.: Analogue spacetime based on 2-component Bose-Einstein condensates. In: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Lecture Notes in Physics vol. 718, pp. 115–163. Springer, Heidelberg (2007)Google Scholar
  73. 73.
    Weinfurtner, S.E.C., White, A., Visser, M.: Trans-Planckian physics and signature change events in Bose gas hydrodynamics. Phys. Rev. D 76, 124008 (2007)CrossRefGoogle Scholar
  74. 74.
    Xu, Z-F., Xu, Z-Y., Chen, G-L.: Some notes on the Busemann equation [in Chinese]. Adv. in Math. (Beijing) 16, 81–86 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas H. Otway
    • 1
  1. 1.Department of Mathematical SciencesYeshiva UniversityNew YorkUSA

Personalised recommendations