Skip to main content

Competing against the Best Nearest Neighbor Filter in Regression

  • Conference paper
Algorithmic Learning Theory (ALT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6925))

Included in the following conference series:

Abstract

Designing statistical procedures that are provably almost as accurate as the best one in a given family is one of central topics in statistics and learning theory. Oracle inequalities offer then a convenient theoretical framework for evaluating different strategies, which can be roughly classified into two classes: selection and aggregation strategies. The ultimate goal is to design strategies satisfying oracle inequalities with leading constant one and rate-optimal residual term. In many recent papers, this problem is addressed in the case where the aim is to beat the best procedure from a given family of linear smoothers. However, the theory developed so far either does not cover the important case of nearest-neighbor smoothers or provides a suboptimal oracle inequality with a leading constant considerably larger than one. In this paper, we prove a new oracle inequality with leading constant one that is valid under a general assumption on linear smoothers allowing, for instance, to compete against the best nearest-neighbor filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arlot, S., Bach, F.: Data-driven calibration of linear estimators with minimal penalties. In: NIPS, pp. 46–54 (2009)

    Google Scholar 

  2. Audibert, J.-Y.: Fast learning rates in statistical inference through aggregation. Ann. Statist. 37(4), 1591–1646 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audibert, J.-Y., Tsybakov, A.B.: Fast learning rates for plug-in classifiers. Ann. Statist. 35(2), 608–633 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraud, Y., Giraud, C., Huet, S.: Estimator selection in the gaussian setting (2010) (submitted)

    Google Scholar 

  5. Ben-David, S., Pal, D., Shalev-Shwartz, S.: Agnostic online learning. In: COLT (2009)

    Google Scholar 

  6. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics 37, 373–384 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buckheit, J.B., Donoho, D.L.: Wavelab and reproducible research. In: Wavelets and Statistics. Lect. Notes Statist., vol. 103, pp. 55–81. Springer, New York (1995)

    Chapter  Google Scholar 

  8. Catoni, O.: Statistical learning theory and stochastic optimization. Lecture Notes in Mathematics, vol. 1851. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  10. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with expert advice. Mach. Learn. 66, 321–352 (2007)

    Article  MATH  Google Scholar 

  11. Cornillon, P.-A., Hengartner, N., Matzner-Løber, E.: Recursive bias estimation for multivariate regression smoothers (2009) (submitted)

    Google Scholar 

  12. Dalalyan, A.S., Salmon, J.: Sharp oracle inequalities for aggregation of affine estimators. technical report, arXiv:1104.3969v2 [math.ST] (2011)

    Google Scholar 

  13. Dalalyan, A.S., Tsybakov, A.B.: Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity. Mach. Learn. 72(1-2), 39–61 (2008)

    Article  Google Scholar 

  14. Dalalyan, A.S., Tsybakov, A.B.: Sparse regression learning by aggregation and Langevin Monte-Carlo. In: COLT (2009)

    Google Scholar 

  15. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic theory of pattern recognition. Applications of Mathematics, vol. 31. Springer, New York (1996)

    MATH  Google Scholar 

  16. George, E.I.: Minimax multiple shrinkage estimation. Ann. Statist. 14(1), 188–205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerchinovitz, S.: Sparsity regret bounds for individual sequences in online linear regression (submitted, 2011)

    Google Scholar 

  18. Goldenshluger, A., Lepski, O.V.: Universal pointwise selection rule in multivariate function estimation. Bernoulli 14(4), 1150–1190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learning halfspaces. SIAM J. Comput. 37(6), 1777–1805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Machine Learning 17(2-3), 115–141 (1994)

    Article  MATH  Google Scholar 

  21. Kivinen, J., Warmuth, M.K.: Averaging expert predictions. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 153–167. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Lafferty, J., Wasserman, L.: Rodeo: sparse, greedy nonparametric regression. Ann. Statist. 36(1), 28–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lepski, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25(3), 929–947 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leung, G., Barron, A.R.: Information theory and mixing least-squares regressions. IEEE Trans. Inf. Theory 52(8), 3396–3410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, K.-C.: From Stein’s unbiased risk estimates to the method of generalized cross validation. Ann. Statist. 13(4), 1352–1377 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salmon, J., Dalalyan, A.S.: Optimal aggregation of affine estimators. In: COLT (2011)

    Google Scholar 

  27. Stein, C.M.: Estimation of the mean of a multivariate distribution. In: Proc. Prague Symp. Asymptotic Statist (1973)

    Google Scholar 

  28. Tsybakov, A.B.: Optimal rates of aggregation. In: COLT, pp. 303–313 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalalyan, A.S., Salmon, J. (2011). Competing against the Best Nearest Neighbor Filter in Regression. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science(), vol 6925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24412-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24412-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24411-7

  • Online ISBN: 978-3-642-24412-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics