Learning Relational Patterns

  • Michael Geilke
  • Sandra Zilles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6925)

Abstract

Patterns provide a simple, yet powerful means of describing formal languages. However, for many applications, neither patterns nor their generalized versions of typed patterns are expressive enough. This paper extends the model of (typed) patterns by allowing relations between the variables in a pattern. The resulting formal languages are called Relational Pattern Languages (RPLs). We study the problem of learning RPLs from positive data (text) as well as the membership problem for RPLs. These problems are not solvable or not efficiently solvable in general, but we prove positive results for interesting subproblems.

We further introduce a new model of learning from a restricted pool of potential texts. Probabilistic assumptions on the process that generates words from patterns make the appearance of some words in the text more likely than that of other words. We prove that, in our new model, a large subclass of RPLs can be learned with high confidence, by effectively restricting the set of likely candidate patterns to a finite set after processing a single positive example.

Keywords

Polynomial Time Recursive Relation Formal Language Target Language Regular Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Angluin, D.: Inductive inference of formal languages from positive data. Inform. Control 45, 117–135 (1980)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gold, E.M.: Language identification in the limit. Inform. Control 10, 447–474 (1967)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. Int. J. Comput. Math. 50, 147–163 (1994)CrossRefMATHGoogle Scholar
  5. 5.
    Kearns, M., Pitt, L.: A polynomial-time algorithm for learning k-variable pattern languages from examples. In: COLT, pp. 57–71 (1989)Google Scholar
  6. 6.
    Koshiba, T.: Typed pattern languages and their learnability. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 367–379. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Lange, S.: Algorithmic learning of recursive languages. Habilitationsschrift, University of Leipzig (2000)Google Scholar
  8. 8.
    Lange, S., Zeugmann, T.: Incremental learning from positive data. J. Comput. Syst. Sci. 53, 88–103 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages from positive data: A survey. Theor. Comput. Sci. 397, 194–232 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397, 166–193 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Reischuk, R., Zeugmann, T.: An average-case optimal one-variable pattern language learner. J. Comput. Syst. Sci. 60, 302–335 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rossmanith, P., Zeugmann, T.: Stochastic finite learning of the pattern languages. Mach. Learn. 44, 67–91 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  14. 14.
    Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Elektronische Informationsverarbeitung und Kybernetik 12, 93–99 (1976)MathSciNetMATHGoogle Scholar
  15. 15.
    Wright, K.: Identification of unions of languages drawn from an identifiable class. In: COLT, pp. 328–333 (1989)Google Scholar
  16. 16.
    Wright, K.: Inductive identification of pattern languages with restricted substitutions. In: COLT, pp. 111–121 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Geilke
    • 1
  • Sandra Zilles
    • 2
  1. 1.Fachbereich InformatikTechnische Universit ät KaiserslauternKaiserslauternGermany
  2. 2.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations