Advertisement

CryptoDSPs for Cloud Privacy

  • Juan Ramón Troncoso-Pastoriza
  • Fernando Pérez-González
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6724)

Abstract

Signal processing governs almost every audiovisual stimuli that we receive from electronic sources. Recently, concerns about privacy of the processed signals (especially biomedical signals) has been raised, as it has been traditionally overlooked. This fact, together with the advent of Cloud computing and the growing tendency to outsource not only the storage but also the processing of data has created a fundamental need for privacy preserving techniques that protect signals at the Cloud.

We provide a landscape of technologies brought up by the novel discipline of Signal Processing in the Encrypted Domain (SPED), and we show their application to solve Cloud Computing privacy issues, introducing the concept of virtualized CryptoDSPs, as an architecture for implementing SPED technologies on Cloud scenarios.

Keywords

Cloud Computing Discrete Cosine Transform Cloud Infrastructure Cloud Privacy Homomorphic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The future of cloud computing. opportunities for european cloud computing beyond 2010, european Commission. Information Society and Media (January 2010)Google Scholar
  2. 2.
    Piva, A., Katzenbeisser, S. (eds.): EURASIP Journal on Information Security. Special Issue on SPED, Hindawi (December 2007)Google Scholar
  3. 3.
    Signal Processing in the EncryptEd Domain project (SPEED)Google Scholar
  4. 4.
    Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through oblivious automata. In: CCS 2007, pp. 519–528. ACM Press, Alexandria (2007)Google Scholar
  6. 6.
    Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Healthgrid initiative, http://www.healthgrid.org
  8. 8.
    Troncoso-Pastoriza, J.R., Pérez-González, F.: Secure and Private Medical Clouds using Encrypted Processing. In: VPH Conference 2010, VPH NoE (2010)Google Scholar
  9. 9.
    Goldreich, O., Micali, S., Widgerson, A.: How to play any mental game. In: Proceedings of STOC 1987, pp. 218–229. ACM Press, New York (1987)Google Scholar
  10. 10.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of STOC 2009, pp. 169–178. ACM Press, Bethesda (2009)Google Scholar
  12. 12.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Privacy with security, DARPA ISAT Study Group (December 2002), http://www.cs.berkeley.edu/~tygar/papers/ISAT-final-briefing.pdf
  14. 14.
    Goldreich, O.: Zero-knowledge twenty years after its invention. In: Electronic Colloquium on Computational Complexity (2002)Google Scholar
  15. 15.
    Bakken, D.E., Parameswaran, R., Blough, D.M., Franz, A.A., Palmer, T.J.: Data obfuscation: Anonymity and desensitization of usable data sets. IEEE Security and Privacy 2(6), 34–41 (2004)CrossRefGoogle Scholar
  16. 16.
    Troncoso-Pastoriza, J.R., Pérez-González, F.: Secure Adaptive Filtering. In: IEEE TIFS (accepted, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juan Ramón Troncoso-Pastoriza
    • 1
  • Fernando Pérez-González
    • 1
    • 2
    • 3
  1. 1.Signal Theory and Communications Dept.University of VigoVigoSpain
  2. 2.GRADIANTVigoSpain
  3. 3.Dept. of Electrical and Computer EngineeringUniversity of New MexicoUSA

Personalised recommendations