Advertisement

Nondeterministic Update of CTL Models by Preserving Satisfaction through Protections

  • Miguel Carrillo
  • David A. Rosenblueth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)

Abstract

We present a recursive algorithm to update a Kripke model so as to satisfy a formula of the Computation-Tree Logic (CTL). Recursive algorithms for model update face a difficulty: deleting (adding) transitions from (to) a Kripke model to satisfy a universal (an existential) subformula may dissatisfy some existential (universal) subformulas. Our method employs protected models to overcome this difficulty. We demonstrate our algorithm with a classical example of automatic synthesis described by Emerson and Clarke in 1982. From a dummy model, where the accessibility relation is the identity relation, our algorithm can efficiently generate a model to satisfy a specification of mutual exclusion in a variant of CTL. Such a variant extends CTL with an operator that limits the out-degree of states. We compare our method with a generate-and-test algorithm and outline a proof of soundness and completeness for our method.

Keywords

Model Check Mutual Exclusion Kripke Model Computation Path Dummy Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in verification by AI techniques. Artificial Intelligence 112(1-2), 57–104 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G.D. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic Model Verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Science of Computer Programming 2, 241–266 (1982)CrossRefzbMATHGoogle Scholar
  6. 6.
    Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. JCSS 30(1), 1–24 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zhang, Y., Ding, Y.: CTL model update for system modifications. Journal of Artificial Intelligence Research 31, 113–155 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miguel Carrillo
    • 1
  • David A. Rosenblueth
    • 1
  1. 1.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxico D.F.México

Personalised recommendations