A Succinct Canonical Register Automaton Model

  • Sofia Cassel
  • Falk Howar
  • Bengt Jonsson
  • Maik Merten
  • Bernhard Steffen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)


We present a novel canonical automaton model, based on register automata, that can easily be used to specify protocol or program behavior. More concretely, register automata are reminiscent of control flow graphs: they comprise a finite control structure, assignments, and conditionals, allowing to assign values of an infinite domain to registers (variables) and to compare them for equality. A major contribution is the definition of a canonical automaton representation of any language recognizable by a deterministic register automaton, by means of a Nerode congruence. Not only is this canonical form easier to comprehend than previous proposals, but it can also be exponentially more succinct than these. Key to the canonical form is the symbolic treatment of data languages, which overcomes the structural restrictions in previous formalisms, and opens the way to new practical applications.


Canonical Form Formal Parameter Regular Language Canonical Model Memorable Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V.: XML with data values: typechecking revisited. J. Comput. Syst. Sci. 66(4), 688–727 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data words. In: Proc. 4th Alberto Mendelzon Int. Workshop on Foundations of Data Management, Buenos Aires, Argentina. CEUR Workshop Proceedings, vol. 619 (2010)Google Scholar
  4. 4.
    Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bielecki, M., Hidders, J., Paredaens, J., Tyszkiewicz, J., den Bussche, J.V.: Navigating with a browser. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 764–775. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theoretical Computer Science 411, 702–715 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bojanczyk, M.: Data monoids. In: STACS, pp. 105–116 (2011)Google Scholar
  8. 8.
    Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Transactions on Computational Logic (to appear, 2011)Google Scholar
  9. 9.
    Bouyer, P.: A logical characterization of data languages. Information Processing Letters 84, 200–202 (2001)MathSciNetGoogle Scholar
  10. 10.
    Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Information and Computation 182(2), 137–162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Francez, N., Kaminski, M.: An algebraic characterization of deterministic regular languages over infinite alphabets. Theoretical Computer Science 306(1-3), 155–175 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  14. 14.
    Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z., Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS, pp. 154–161 (2009)Google Scholar
  15. 15.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86(1), 43–68 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lazic, R., Nowak, D.: A unifying approach to data-independence. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 581–595. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Maler, O., Pnueli, A.: On recognizable timed languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Nerode, A.: Linear Automaton Transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal of Computing 16(6), 973–989 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Trans. on Software Engineering 30(1), 29–42 (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence. RFC 6121 (Proposed Standard) (March 2011)Google Scholar
  23. 23.
    Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sofia Cassel
    • 1
  • Falk Howar
    • 2
  • Bengt Jonsson
    • 1
  • Maik Merten
    • 2
  • Bernhard Steffen
    • 2
  1. 1.Dept. of Information TechnologyUppsala UniversitySweden
  2. 2.Chair of Programming SystemsUniversity of DortmundGermany

Personalised recommendations