Advertisement

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata

  • Lukáš Holík
  • Ondřej Lengál
  • Jiří Šimáček
  • Tomáš Vojnar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)

Abstract

The paper considers several issues related to efficient use of tree automata in formal verification. First, a new efficient algorithm for inclusion checking on non-deterministic tree automata is proposed. The algorithm traverses the automaton downward, utilizing antichains and simulations to optimize its run. Results of a set of experiments are provided, showing that such an approach often very significantly outperforms the so far common upward inclusion checking. Next, a new semi-symbolic representation of non-deterministic tree automata, suitable for automata with huge alphabets, is proposed together with algorithms for upward as well as downward inclusion checking over this representation of tree automata. Results of a set of experiments comparing the performance of these algorithms are provided, again showing that the newly proposed downward inclusion is very often better than upward inclusion checking.

Keywords

Boolean Function Sink Node Binary Decision Diagram Tree Automaton Simulation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing Simulations over Tree Automata: Efficient Techniques for Reducing Tree Automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Holík, L., Chen, Y.-F., Mayr, R., Vojnar, T.: When Simulation Meets Antichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular Tree Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based Universality and Inclusion Testing over Nondeterministic Finite Tree Automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model Checking. ENTCS, vol. 149. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  6. 6.
    Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bourdier, T.: Tree Automata-based Semantics of Firewalls. In: Proc. of SAR-SSI 2011. IEEE, Los Alamitos (2011)Google Scholar
  8. 8.
    Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers (1986)Google Scholar
  9. 9.
    Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.: Spectral Transforms for Large Boolean Functions with Applications to Technology Mapping. FMSD 10 (1997)Google Scholar
  10. 10.
    Doyen, L., Raskin, J.F.: Antichain Algorithms for Finite Automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: orest Automata for Verification of Heap Manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Holík, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient Inclusion Checking on Explicit and Semi-Symbolic Tree Automata. Tech. rep. FIT-TR-2011-04, FIT BUT, Czech Rep. (2011)Google Scholar
  13. 13.
    Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. ACM Trans. Program. Lang. Syst. 27 (2005)Google Scholar
  14. 14.
    Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 112–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA Implementation Secrets. International Journal of Foundations of Computer Science, 13(4) (2002)Google Scholar
  16. 16.
    Madhusudan, P., Parlato, G., Qiu, X.: Decidable Logics Combining Heap Structures and Data. SIGPLAN Not. 46 (2011)Google Scholar
  17. 17.
    Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.2 (May 2011)Google Scholar
  18. 18.
    Tozawa, A., Hagiya, M.: XML Schema Containment Checking Based on Semi-implicit Techniques. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 213–225. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lukáš Holík
    • 1
    • 2
  • Ondřej Lengál
    • 1
  • Jiří Šimáček
    • 1
    • 3
  • Tomáš Vojnar
    • 1
  1. 1.FIT, Brno University of TechnologyCzech Republic
  2. 2.Uppsala UniversitySweden
  3. 3.VERIMAG, UJF/CNRS/INPGGièresFrance

Personalised recommendations