Modal Transition Systems: Composition and LTL Model Checking

  • Nikola Beneš
  • Ivana Černá
  • Jan Křetínský
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)


Modal transition systems (MTS) is a well established formalism used for specification and for abstract interpretation. We consider its disjunctive extension (DMTS) and we provide algorithms showing that refinement problems for DMTS are not harder than in the case of MTS. There are two main results in the paper. Firstly, we identify an error in a previous attempt at LTL model checking of MTS and provide algorithms for LTL model checking of MTS and DMTS. Moreover, we show how to apply this result to compositional verification and circumvent the general incompleteness of the MTS composition. Secondly, we give a solution to the common implementation and conjunctive composition problems lowering the complexity from EXPTIME to PTIME.


Model Check Linear Temporal Logic Software Product Line Conjunctive Normal Form Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Larsen, K.G., Nyman, U., Wasowski, A.: Modeling software product lines using color-blind transition systems. STTT 9(5-6), 471–487 (2007)CrossRefGoogle Scholar
  2. 2.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE Computer Society, Los Alamitos (1988)Google Scholar
  3. 3.
    Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal and mixed specifications. Bulletin of the EATCS (95), 94–129 (2008)Google Scholar
  4. 4.
    Raclet, J.B.: Residual for component specifications. In: Proc. of the 4th International Workshop on Formal Aspects of Component Software (2007)Google Scholar
  5. 5.
    Bertrand, N., Pinchinat, S., Raclet, J.B.: Refinement and consistency of timed modal specifications. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 152–163. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are modalities good for interface theories? In: ACSD, pp. 119–127. IEEE, Los Alamitos (2009)Google Scholar
  7. 7.
    Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Proc. of FSE 2004, pp. 43–52. ACM, New York (2004)Google Scholar
  8. 8.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Nanz, S., Nielson, F., Nielson, H.R.: Modal abstractions of concurrent behaviour. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 159–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp. 108–117. IEEE Computer Society, Los Alamitos (1990)Google Scholar
  12. 12.
    Fecher, H., Steffen, M.: Characteristic mu-calculus formulas for underspecified transition systems. ENTCS 128(2), 103–116 (2005)zbMATHGoogle Scholar
  13. 13.
    Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an one-selecting variant. J. of Logic and Alg. Program. 77(1-2), 20–39 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: EXPTIME-complete decision problems for mixed and modal specifications. In: 15th International Workshop on Expressiveness in Concurrency (2008)Google Scholar
  15. 15.
    Beneš, N., Křetínský, J., Larsen, K., Srba, J.: On determinism in modal transition systems. Theoretical Computer Science 410(41), 4026–4043 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Juhl, L., Larsen, K.G., Srba, J.: Introducing modal transition systems with weight intervals (submitted)Google Scholar
  17. 17.
    Bruns, G., Godefroid, P.: Generalized model checking: Reasoning about partial state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Godefroid, P., Piterman, N.: LTL generalized model checking revisited. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 89–104. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from properties and scenarios. IEEE Trans. Software Eng. 35(3), 384–406 (2009)CrossRefGoogle Scholar
  20. 20.
    D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The modal transition system analyser. In: Proc. of ASE 2008, pp. 475–476. IEEE, Los Alamitos (2008)Google Scholar
  21. 21.
    Beneš, N., Černá, I., Křetínský, J.: Disjunctive modal transition systems and generalized LTL model checking. Technical report FIMU-RS-2010-12, Faculty of Informatics, Masaryk University, Brno (2010)Google Scholar
  22. 22.
    Beneš, N., Křetínský, J.: Process algebra for modal transition systemses. In: MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  23. 23.
    Beneš, N., Křetínský, J., Larsen, K.G., Srba, J.: Checking thorough refinement on modal transition systems is EXPTIME-complete. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 112–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE, Los Alamitos (1977)Google Scholar
  25. 25.
    Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 137–151. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  29. 29.
    Dams, D., Namjoshi, K.S.: Automata as abstractions. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 216–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. ACM Trans. Comput. Log. 5(1), 1–25 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Piterman, N., Pnueli, A.: Faster solution of rabin and streett games. In: Proceedings of LICS 2006, pp. 275–284. IEEE press, Los Alamitos (2006)Google Scholar
  32. 32.
    Baier, C., Katoen, J.P.: Principles of model checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nikola Beneš
    • 1
  • Ivana Černá
    • 1
  • Jan Křetínský
    • 1
    • 2
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations