Advertisement

Antichain-Based QBF Solving

  • Thomas Brihaye
  • Véronique Bruyère
  • Laurent Doyen
  • Marc Ducobu
  • Jean-Francois Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6996)

Abstract

We consider the problem of QBF solving viewed as a reachability problem in an exponential And-Or graph. Antichain-based algorithms for reachability analysis in large graphs exploit certain subsumption relations to leverage the inherent structure of the explored graph in order to reduce the effect of state explosion, with high performance in practice.

In this paper, we propose simple notions of subsumption induced by the structural properties of the And-Or graphs for QBF solving. Subsumption is used to reduce the size of the search tree, and to define compact representations of certificates (in the form of antichains) both for positive and negative instances of QBF. We show that efficient exploration of the reduced search tree essentially relies on solving variants of Max-SAT and Min-SAT. Preliminary stand-alone experiments of this algorithm show that the antichain-based approach is promising.

Keywords

Winning Strategy Boolean Formula Binary Decision Diagram Reachability Problem Subsumption Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asano, T., Williamson, D.P.: Improved approximation algorithms for max sat. J. Algorithms 42(1), 173–202 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Benedetti, M.: Extracting Certificates from Quantified Boolean Formulas. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 47–53. Professional Book Center (2005)Google Scholar
  4. 4.
    Benedetti, M.: Quantifier Trees for QBFs. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 378–385. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Benedetti, M., Mangassarian, H.: Qbf-based formal verification: Experience and perspectives. JSAT 5(1-4), 133–191 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008)zbMATHGoogle Scholar
  8. 8.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified Boolean formulae. In: Proc. of AAAI 1998/IAAI 1998, pp. 262–267. MIT Press, Cambridge (1998)Google Scholar
  9. 9.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Cook, B., Kroening, D., Sharygina, N.: Verification of boolean programs with unbounded thread creation. Theor. Comput. Sci. 388(1-3), 227–242 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Doyen, L., Raskin, J.-F.: Antichain Algorithms for Finite Automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas. In: Proc. of IAAI, pp. 417–422. AAAI Press, Menlo Park (2000)Google Scholar
  15. 15.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability library (QBFLIB) (2001), www.qbflib.org
  16. 16.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An Efficient QBF Solver. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jussila, T., Biere, A.: Compressing BMC Encodings with QBF. Electron. Notes Theor. Comput. Sci. 174, 45–56 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kohli, R., Krishnamurti, R., Mirchandani, P.: The Minimum Satisfiability Problem. SIAM J. Discrete Math. 7(2), 275–283 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kügel, A.: Improved Exact Solver for the Weighted Max-SAT problem. Accepted at the workshop Pragmatics of SAT. To appear in easychair electronic proceedings (2011)Google Scholar
  21. 21.
    Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 613–631. IOS Press, Amsterdam (2009)Google Scholar
  22. 22.
    Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver (System Description). Journal on Satisfiability, Boolean Modeling and Computation 7, 71–76 (2010)Google Scholar
  23. 23.
    Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-Based QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying QBFs: A comparison of state-of-the-art tools. AI Commun. 22, 191–210 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Pan, G., Vardi, M.Y.: Symbolic Decision Procedures for QBF. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Company, Reading (1994)zbMATHGoogle Scholar
  27. 27.
    Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The Seventh QBF Solvers Evaluation (QBFEVAL 2010). In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 237–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Véronique Bruyère
    • 2
  • Laurent Doyen
    • 3
  • Marc Ducobu
    • 1
  • Jean-Francois Raskin
    • 4
  1. 1.Institut de MathématiqueUniversité de MonsBelgique
  2. 2.Institut d’InformatiqueUniversité de MonsBelgique
  3. 3.LSV, ENS Cachan & CNRSFrance
  4. 4.Département d’InformatiqueUniversité Libre de BruxellesBelgique

Personalised recommendations