On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm

  • Franz Baader
  • Rafael Peñaloza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6989)


The combination of Fuzzy Logics and Description Logics (DLs) has been investigated for at least two decades because such fuzzy DLs can be used to formalize imprecise concepts. In particular, tableau algorithms for crisp Description Logics have been extended to reason also with their fuzzy counterparts. Recently, it has been shown that, in the presence of general concept inclusion axioms (GCIs), some of these fuzzy DLs actually do not have the finite model property, thus throwing doubt on the correctness of tableau algorithm for which it was claimed that they can handle fuzzy DLs with GCIs.

In a previous paper, we have shown that these doubts are indeed justified, by proving that a certain fuzzy DL with product t-norm and involutive negation is undecidable. In the present paper, we show that undecidability also holds if we consider a t-norm-based fuzzy DL where disjunction and involutive negation are replaced by the constructor implication, which is interpreted as the residuum. The only condition on the t-norm is that it is a continuous t-norm “starting” with the product t-norm, which covers an uncountable family of t-norms.


Fuzzy Logic Description Logic Membership Degree Concept Constructor Existential Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Baader, F., Peñaloza, R.: Are fuzzy description logics with general concept inclusion axioms decidable? In: Proc. of Fuzz-IEEE 2011, pp. 1735–1742. IEEE Press, Los Alamitos (2011)Google Scholar
  3. 3.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in some fuzzy description logics. CoRR, abs/1003.1588 (2010)Google Scholar
  5. 5.
    Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in some fuzzy description logics. Fuzzy Sets and Systems 172(23), 1–12 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics under Gödel semantics. Int. J. of Approx. Reas. 50(3), 494–514 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: Proc. of Fuzz-IEEE 2007, pp. 1–6. IEEE, Los Alamitos (2007)Google Scholar
  8. 8.
    Bobillo, F., Straccia, U.: On qualified cardinality restrictions in fuzzy description logics under Łukasiewicz semantics. In: Proc. of IPMU 2008, pp. 1008–1015 (2008)Google Scholar
  9. 9.
    Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems 160(23), 3382–3402 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bobillo, F., Straccia, U.: Reasoning with the finitely many-valued Łukasiewicz fuzzy description logic \(\mathcal{SROIQ}\). Information Sciences 181, 758–778 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Borgwardt, S., Peñaloza, R.: Description logics over lattices with multi-valued ontologies. In: Proc. of IJCAI 2011 (to appear, 2011)Google Scholar
  12. 12.
    Borgwardt, S., Peñaloza, R.: Fuzzy ontologies over lattices with t-norms. In: Proc. of DL 2011, Barcelona, Spain. CEUR-WS, vol. 745 (2011)Google Scholar
  13. 13.
    Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-valued product logic. In: Proc. of KR 2010. AAAI Press, Menlo Park (2010)Google Scholar
  14. 14.
    García-Cerdaña, A., Armengol, E., Esteva, F.: Fuzzy description logics and t-norm based fuzzy logics. Int. J. of Approx. Reas. 51, 632–655 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hájek, P.: Metamathematics of Fuzzy Logic Trends in Logic. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1), 1–15 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)CrossRefGoogle Scholar
  18. 18.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. Journal of Web Semantics 6(4), 291–308 (2008)CrossRefGoogle Scholar
  19. 19.
    Molitor, R., Tresp, C.B.: Extending description logics to vague knowledge in medicine. In: Szczepaniak, P., Lisboa, P., Tsumoto, S. (eds.) Fuzzy Systems in Medicine. Studies in Fuzziness and Soft Computing, vol. 41, pp. 617–635. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Annals of Mathematics 65, 117–143 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Post, E.: A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society 52, 264–268 (1946)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: The fuzzy description logic f-\(\mathcal{SHIN}\). In: Proc. of URSW 2005, pp. 67–76 (2005)Google Scholar
  23. 23.
    Straccia, U.: Reasoning within fuzzy description logics. JAIR 14, 137–166 (2001)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Straccia, U.: Description logics with fuzzy concrete domains. In: Proc. of UAI 2005, pp. 559–567. AUAI Press (2005)Google Scholar
  25. 25.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. In: Proc. of EUSFLAT 2007, pp. 213–220. Universitas Ostraviensis (2007)Google Scholar
  26. 26.
    Tresp, C., Molitor, R.: A description logic for vague knowledge. In: Proc. of ECAI 1998, pp. 361–365. J. Wiley and Sons, Chichester (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Franz Baader
    • 1
  • Rafael Peñaloza
    • 1
  1. 1.Theoretical Computer ScienceTU DresdenGermany

Personalised recommendations