Size-Change Termination and Satisfiability for Linear-Time Temporal Logics
Abstract
In the automata-theoretic framework, finite-state automata are used as a machine model to capture the operational content of temporal logics. Decision problems like satisfiability, subsumption, equivalence, etc. then translate into questions on automata like emptiness, inclusion, language equivalence, etc. Linear-time temporal logics like LTL, PSL and the linear-time μ-calculus have relatively simple translations into alternating parity automata, and this automaton model is closed under all Boolean operations with very simple constructions. Thus, the typical decision problems for such linear-time temporal logics reduce relatively simply to the emptiness problem for alternating parity automata. In this paper we present a method for decision this emptiness problem without going through intermediate automaton models like nondeterministic ones. The method is a direct adaptation of the size-change termination principle which was orgininally used to decide termination of abstract functional programs.
Keywords
Temporal Logic Linear Temporal Logic Atomic Proposition Boolean Expression Nest DepthPreview
Unable to display preview. Download preview PDF.
References
- 1.Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Simulation subsumption in ramsey-based büchi automata universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 2.Inc. Accellera Organization. Formal semantics of Accellera property specification language (2004), In Appendix B of http://www.eda.org/vfv/docs/PSL-v1.1.pdf
- 3.Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–73. Springer, Heidelberg (1989)CrossRefGoogle Scholar
- 4.Bustan, D., Fisman, D., Havlicek, J.: Automata constructions for PSL. Technical Report MCS05-04, The Weizmann Institute of Science (2005)Google Scholar
- 5.Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 274–285. Springer, Heidelberg (2006)Google Scholar
- 6.Dax, C., Klaedtke, F.: Alternation elimination by complementation (Extended abstract). In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 214–229. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 7.Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, ch. 16, pp. 996–1072. Elsevier, MIT Press, New York, USA (1990)Google Scholar
- 8.Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 9.Fogarty, S., Vardi, M.Y.: Efficient büchi universality checking. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 10.Kaivola, R.: Using Automata to Characterise Fixed Point Temporal Logics. PhD thesis, LFCS, Division of Informatics, The University of Edinburgh, Tech. Rep. ECS-LFCS-97-356 (1997)Google Scholar
- 11.Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 519–535. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 12.Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little bit of succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 90–104. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 13.Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. ACM SIGPLAN Notices 36(3), 81–92 (2001)CrossRefMATHGoogle Scholar
- 14.Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 15.Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. TCS 32(3), 321–330 (1984)CrossRefMATHMathSciNetGoogle Scholar
- 16.Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symp. on Foundations of Computer Science, FOCS 1977, pp. 46–57. IEEE, Providence (1977)Google Scholar
- 17.Ramsey, F.P.: On a problem of formal logic. Proc. London Mathematical Society, Series 2 30(4), 338–384 (1928)Google Scholar
- 18.Ramsey, F.P.: On a problem in formal logic. Proc. London Math. Soc. 30(3), 264–286 (1930)CrossRefMATHGoogle Scholar
- 19.Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of the Association for Computing Machinery 32(3), 733–749 (1985)CrossRefMATHMathSciNetGoogle Scholar
- 20.Stirling, C.: Comparing linear and branching time temporal logics. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 1–20. Springer, Heidelberg (1989)CrossRefGoogle Scholar
- 21.Vardi.: Linear vs. branching time: A complexity-theoretic perspective. In: LICS: IEEE Symposium on Logic in Computer Science (1998)Google Scholar
- 22.Vardi, M.Y.: A temporal fixpoint calculus. In: ACM (ed.) Proc. Conf. on Principles of Programming Languages, POPL 1988, pp. 250–259. ACM Press, New York (1988)Google Scholar
- 23.Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg (1995)CrossRefGoogle Scholar
- 24.Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar
- 25.Vardi, M.Y.: Branching vs. Linear time: Final showdown. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 26.Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)CrossRefMATHMathSciNetGoogle Scholar
- 27.Wolper, P.: Temporal logic can be more expressive. Information and Control 56, 72–99 (1983)CrossRefMATHMathSciNetGoogle Scholar