Stochastic Local Search for SMT: Combining Theory Solvers with WalkSAT

  • Alberto Griggio
  • Quoc-Sang Phan
  • Roberto Sebastiani
  • Silvia Tomasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6989)


A dominant approach to Satisfiability Modulo Theories (SMT) relies on the integration of a Conflict-Driven-Clause-Learning (CDCL) SAT solver and of a decision procedure able to handle sets of atomic constraints in the underlying theory \(\mathcal{T}\) (\({\ensuremath{\mathcal{T}} }\textit{-solver}\) ). In pure SAT, however, Stochastic Local-Search (SLS) procedures sometimes are competitive with CDCL SAT solvers on satisfiable instances. Thus, it is a natural research question to wonder whether SLS can be exploited successfully also inside SMT tools.

In this paper we investigate this issue. We first introduce a general procedure for integrating a SLS solver of the WalkSAT family with a \({\ensuremath{\mathcal{T}} }\textit{-solver}\). Then we present a group of techniques aimed at improving the synergy between these two components. Finally we implement all these techniques into a novel SLS-based SMT solver for the theory of linear arithmetic over the rationals, combining UBCSAT/UBCSAT++ and MathSAT, and perform an empirical evaluation on satisfiable instances. The results confirm the potential of the approach.


Truth Assignment Unit Clause Stochastic Local Search Multiple Learn Input Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures for temporal reasoning. In: Proc. European Conference on Planning, CP 1999 (1999)Google Scholar
  3. 3.
    Audemard, G., Bertoli, P., Cimatti, A., Korniłowicz, A., Sebastiani, R.: A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Audemard, G., Lagniez, J.-M., Mazure, B., Sais, L.: Boosting local search thanks to cdcl. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 474–488. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of Satisfiability. ch. 26, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  6. 6.
    Belov, A., Stachniak, Z.: Improving variable selection process in stochastic local search for propositional satisfiability. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 258–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The mathSAT 4 SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 299–303. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hoos, H.H., Stutzle, T.: Local Search Algorithms for SAT: An Empirical Evaluation. Journal of Automated Reasoning 24(4) (2000)Google Scholar
  11. 11.
    Hoos, H.H., Stutzle, T.: Stochastic Local Search Foundation And Application. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  12. 12.
    Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing Conflicts: A Heuristic Repair Method for Constraint-Satisfaction and Scheduling Problems. Artificial Intelligence 58(1) (1992)Google Scholar
  13. 13.
    Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Modeling and Computation, JSAT 3 (2007)Google Scholar
  14. 14.
    Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proc. AAAI. MIT Press, Cambridge (1994)Google Scholar
  15. 15.
    Tomasi, S.: Stochastic Local Search for SMT. Technical report, DISI-10-060, DISI, University of Trento (2010),
  16. 16.
    Tompkins, D., Hoos, H.: Novelty+ and Adaptive Novelty+. In: SAT 2004 Competition Booklet (2004)Google Scholar
  17. 17.
    Tompkins, D., Hoos, H.: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alberto Griggio
    • 1
  • Quoc-Sang Phan
    • 2
  • Roberto Sebastiani
    • 2
  • Silvia Tomasi
    • 2
  1. 1.FBK-IrstTrentoItaly
  2. 2.DISI, University of TrentoItaly

Personalised recommendations