Advertisement

Enabling a Pervasive Approach for Intelligent Decision Support in Critical Health Care

  • Carlos Filipe Portela
  • Manuel Filipe Santos
  • Álvaro Silva
  • José Machado
  • António Abelha
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 221)

Abstract

The creation of a pervasive and intelligent environment makes possible the remote work with good results in a great range of applications. However, the critical health care is one of the most difficult areas to implement it. In particular Intensive Care Units represent a new challenge for this field, bringing new requirements and demanding for new features that should be satisfied if we want to succeed. This paper presents a framework to evaluate future developments in order to efficiently adapt an Intelligent Decision Support System to a pervasive approach in the area of critical health (INTCare research project).

Keywords

Intensive Care Pervasive Environments Critical Health Care Intelligent Environment Real-Time Online Remote Connection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine. Journal of Decision Systems (2006) Google Scholar
  2. 2.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J.: INTCARE - Multi-agent approach for real-time Intelligent Decision Support in Intensive Medicine. In: 3rd International Conference on Agents and Artificial Intelligence (ICAART). Springer, Rome (2011)Google Scholar
  3. 3.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J., Silva, A., Rua, F.: Information Modeling for Real-Time Decision Support in Intensive Medicine. In: Chen, S.Y., Li, Q. (eds.) Proceedings of the 8th Wseas International Conference on Applied Computer and Applied Computational Science - Applied Computer and Applied Computational Science, pp. 360–365. World Scientific and Engineering Acad and Soc., Athens (2009)Google Scholar
  4. 4.
    Gago, P., Silva, A., Santos, M.F.: Adaptive decision support for intensive care. In: Conference Adaptive Decision Support for Intensive Care, pp. 415–425. Springer, Berlin (Year)Google Scholar
  5. 5.
    Portela, F., Vilas-Boas, M., Santos, M.F., Fernando, R.: Improvements in data quality for decision support in Intensive Care. In: eHealth 2010, 3rd International ICST Conference on Electronic Healthcare for the 21st century, Casablanca, Morroco, p. 8 (2010)Google Scholar
  6. 6.
    Vilas-Boas, M., Santos, M.F., Portela, F., Silva, Á., Rua, F.: Hourly prediction of organ failure and outcome in intensive care based on data mining techniques. In: 12th International Conference on Enterprise Information Systems, Funchal, Madeira, Portugal, p. 9. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Villas Boas, M., Gago, P., Portela, F., Rua, F., Silva, Á., Santos, M.F.: Distributed and real time Data Mining in the Intensive Care Unit. In: 19th European Conference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, p. 5 (2010) Google Scholar
  8. 8.
    Bricon-Souf, N., Newman, C.R.: Context awareness in health care: A review. International Journal of Medical Informatics 76, 2–12 (2007)CrossRefGoogle Scholar
  9. 9.
    Apostolakos, M.J., Papadakos, P.J.: The Intensive Care Manual. McGraw-Hill Professional, New York (2001)Google Scholar
  10. 10.
    Suter, P., Armaganidis, A., Beaufils, F., Bonfill, X., Burchardi, H., Cook, D., Fagot-Largeault, A., Thijs, L., Vesconi, S., Williams, A.: Predicting outcome in ICU patients. Intensive Care Medicine 20, 390–397 (1994)CrossRefGoogle Scholar
  11. 11.
    Varshney, U.: Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications 12, 113–127 (2007)CrossRefGoogle Scholar
  12. 12.
    Santos, M.F., Cortez, P., Gago, P., Silva, Á., Rua, F.: Intelligent decision support in Intensive Care Medicine. In: Conference Intelligent decision support in Intensive Care Medicine, pp. 401–405 (Year) Google Scholar
  13. 13.
    Coiera, E.: When conversation is better than computation. Journal of the American Medical Informatics Association 7, 277 (2000)CrossRefGoogle Scholar
  14. 14.
    Das, S.K., Roy, N.: Learning, Prediction and Mediation of Context Uncertainty in Smart Pervasive Environments. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Workshops 2008. LNCS, vol. 5333, pp. 820–829. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Orwat, C., Graefe, A., Faulwasser, T.: Towards pervasive computing in health care - A literature review. BMC Medical Informatics and Decision Making 8, 26 (2008)CrossRefGoogle Scholar
  16. 16.
    Black, J.P., Segmuller, W., Cohen, N., Leiba, B., Misra, A., Ebling, M.R., Stern, E.: Pervasive Computing in Health Care: Smart Spaces and Enterprise Information Systems. In: Conference Pervasive Computing in Health Care: Smart Spaces and Enterprise Information Systems. Citeseer (Year) Google Scholar
  17. 17.
    Portela, F., Santos, M., Vilas-Boas, M., Rua, F., Silva, Á., Neves, J.: Real-time Intelligent decision support in intensive medicine. In: KMIS 2010, International Conference on Knowledge Management and Information Sharing, Valência, Espanha, p. 7 (2010)Google Scholar
  18. 18.
    Gago, P., Santos, M.F.: Towards an Intelligent Decision Support System for Intensive Care Units. In: 18th European Conference on Artificial Intelligence, Greece (2008) Google Scholar
  19. 19.
    Silva, Á., Pereira, J., Santos, M., Gomes, L., Neves, J.: Organ failure prediction based on clinical adverse events: a cluster model approach. In: Conference Organ Failure Prediction based on Clinical Adverse Events: a Cluster Model Approach. ACTA Press (Year) Google Scholar
  20. 20.
    Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Multiple organ failure diagnosis using adverse events and neural networks. In: Conference Multiple Organ Failure Diagnosis using Adverse Events and Neural Networks, pp. 401–408. Springer, Heidelberg (Year) Google Scholar
  21. 21.
    Cook, D.J., Das, S.K.: Smart environments: technologies, protocols, and applications. Wiley Interscience, Hoboken (2005)Google Scholar
  22. 22.
    Kalli, S., Ambroso, C., Gregory, R., Heikelä, A., Ilomäki, A., Leaning, M., Marraro, G., Mereu, M., Tuomisto, T., Yates, C.: Inform: Conceptual modelling of intensive care information systems. Journal of Clinical Monitoring and Computing 9, 85–94 (1993)CrossRefGoogle Scholar
  23. 23.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J.: Information Architecture for Intelligent Decision Support in Intensive Medicine. In: 8th WSEAS International Conference on Applied Computer & amp; Applied Computational Science, vol. 8, pp. 810–819 (2009)Google Scholar
  24. 24.
    Gao, S., Xu, D.: Conceptual modeling and development of an intelligent agent-assisted decision support system for anti-money laundering. Expert Systems with Applications 36, 1493–1504 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Santos, M., Portela, F., Boas, M., Machado, J., Abelha, A., Neves, J., Silva, A., Rua, F.: Intelligent Decision Support in Intensive Care Units Nursing Information Requirements. In: WSEAS (ed.) Applied Informatics and Communications (AIC 2009), Hangzhou (2009)Google Scholar
  26. 26.
    O’Donoghue, J., Herbert, J., Sammon, D.: Patient sensors: A data quality perspective. In: Helal, S., Mitra, S., Wong, J., Chang, C., Mokhtari, M. (eds.) ICOST 2008. LNCS, vol. 5120, pp. 54–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Filipe Portela
    • 1
  • Manuel Filipe Santos
    • 1
  • Álvaro Silva
    • 2
  • José Machado
    • 3
  • António Abelha
    • 3
  1. 1.Centro Algoritmi, Departamento de Sistemas de InformaçãoUniversidade do MinhoPortugal
  2. 2.Serviço Cuidados IntensivosCHP – Hospital Santo AntónioPortoPortugal
  3. 3.Departamento de InformáticaUniversidade do MinhoPortugal

Personalised recommendations