Towards User Transparent Parallel Multimedia Computing on GPU-Clusters

  • Ben van Werkhoven
  • Jason Maassen
  • Frank J. Seinstra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6161)


The research area of Multimedia Content Analysis (MMCA) considers all aspects of the automated extraction of knowledge from multimedia archives and data streams. To satisfy the increasing computational demands of MMCA problems, the use of High Performance Computing (HPC) techniques is essential. As most MMCA researchers are not HPC experts, there is an urgent need for ‘familiar’ programming models and tools that are both easy to use and efficient.

Today, several user transparent library-based parallelization tools exist that aim to satisfy both these requirements. In general, such tools focus on data parallel execution on traditional compute clusters. As of yet, none of these tools also incorporate the use of many-core processors (e.g. GPUs), however. While traditional clusters are now being transformed into GPU-clusters, programming complexity vastly increases — and the need for easy and efficient programming models is as urgent as ever.

This paper presents our first steps in the direction of obtaining a user transparent programming model for data parallel and hierarchical multimedia computing on GPU-clusters. The model is obtained by extending an existing user transparent parallel programming system (applicable to traditional compute clusters) with a set of CUDA compute kernels. We show our model to be capable of obtaining orders-of-magnitude speed improvements, without requiring any additional effort from the application programmer.


Total Execution Time Thread Block Generalize Convolution Traditional Cluster Constant Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Snoek, C., Worring, M., Geusebroek, J., Koelma, D., Seinstra, F., Smeulders, A.: The semantic pathfinder: Using an authoring metaphor for generic multimedia indexing. IEEE Trans. Pat. Anal. Mach. Intell. 28(10), 1678–1689 (2006)CrossRefGoogle Scholar
  2. 2.
    Galizia, A., D’Agostino, D., Clematis, A.: A Grid Framework to Enable Parallel and Concurrent TMA Image Analysis. International Journal of Grid and Utility Computing 1(3), 261–271 (2009)CrossRefGoogle Scholar
  3. 3.
    Morrow, P.J., et al.: Efficient implementation of a portable parallel programming model for image processing. Concur. - Pract. Exp. 11(11), 671–685 (1999)CrossRefGoogle Scholar
  4. 4.
    Lebak, J., et al.: Parallel VSIPL++: An Open Standard Software Library for High-Performance Signal Processing. Proc. IEEE 93(2), 313–330 (2005)CrossRefGoogle Scholar
  5. 5.
    Juhasz, Z., Crookes, D.: A PVM Implementation of a Portable Parallel Image Processing Library. In: Ludwig, T., Sunderam, V.S., Bode, A., Dongarra, J. (eds.) PVM/MPI 1996 and EuroPVM 1996. LNCS, vol. 1156, pp. 188–196. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Plaza, A., et al.: Commodity cluster-based parallel processing of hyperspectral imagery. J. Parallel Distrib. Comput. 66(3), 345–358 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Seinstra, F., Geusebroek, J., Koelma, D., Snoek, C., Worring, M., Smeulders, A.: High-Performance Distributed Image and Video Content Analysis with Parallel-Horus. IEEE Multimedia 14(4), 64–75 (2007)CrossRefGoogle Scholar
  8. 8.
    Garland, M., et al.: Parallel computing experiences with cuda. IEEE Micro 28(4), 13–27 (2008)CrossRefGoogle Scholar
  9. 9.
    Koelma, D.: et al.: Horus C++ Reference. Technical report, Univ. Amsterdam, The Netherlands (January 2002)Google Scholar
  10. 10.
    Seinstra, F.J., Koelma, D., Bagdanov, A.D.: Finite State Machine-Based Optimization of Data Parallel Regular Domain Problems Applied in Low-Level Image Processing. IEEE Trans. Parallel Distrib. Syst. 15(10), 865–877 (2004)CrossRefGoogle Scholar
  11. 11.
    Kirk, D.B., Hwu, W.m.W.: Programming Massively Parallel Processors: A Hands-on Approach, 1st edn. Morgan Kaufmann, San Francisco (2010)Google Scholar
  12. 12.
    Seinstra, F.J., Koelma, D., Geusebroek, J.M.: A software architecture for user transparent parallel image processing. Parallel Computing 28(7-8), 967–993 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Geusebroek, J.M., et al.: A Minimum Cost Approach for Segmenting Networks of Lines. International Journal of Computer Vision 43(2), 99–111 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ben van Werkhoven
    • 1
  • Jason Maassen
    • 1
  • Frank J. Seinstra
    • 1
  1. 1.Department of Computer ScienceVU UniversityAmsterdamThe Netherlands

Personalised recommendations