Skip to main content

Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

Abstract

Neurodegenerative disorders are characterized by changes in multiple biomarkers, which may provide complementary information for diagnosis and prognosis. We present a framework in which proximities derived from random forests are used to learn a low-dimensional manifold from labelled training data and then to infer the clinical labels of test data mapped to this space. The proposed method facilitates the combination of embeddings from multiple datasets, resulting in the generation of a joint embedding that simultaneously encodes information about all the available features. It is possible to combine different types of data without additional processing, and we demonstrate this key feature by application to voxel-based FDG-PET and region-based MR imaging data from the ADNI study. Classification based on the joint embedding coordinates out-performs classification based on either modality alone. Results are impressive compared with other state-of-the-art machine learning techniques applied to multi-modality imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  2. Aljabar, P., Rueckert, D., Crum, W.: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. Neuroimage 43(2), 225–235 (2008)

    Article  Google Scholar 

  3. Wachinger, C., Yigitsoy, M., Navab, N.: Manifold learning for image-based breathing gating with application to 4D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 26–33. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for non-linear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  5. Gerber, S., Tasdizen, T., Joshi, S., Whitaker, R.: On the manifold structure of the space of brain images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 305–312. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Aljabar, P., Wolz, R., Srinivasan, L., Counsell, S., Boardman, J.P., Murgasova, M., Doria, V., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: Combining morphological information in a manifold learning framework: Application to neonatal MRI. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 1–8. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  8. Cox, T.F., Cox, M.A.A.: Multidimensional scaling. Chapman and Hall, Boca Raton (2001)

    MATH  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, Heidelberg (2011); corrected 5th printing

    MATH  Google Scholar 

  10. Shi, T., Horvath, S.: Unsupervised learning with random forest predictors. J. Comp. Graph. Stat. 15(1), 118–138 (2006)

    Article  MathSciNet  Google Scholar 

  11. Zhang, D., Wang, Y., Zhou, L., et al.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)

    Article  Google Scholar 

  12. Hinrichs, C., Singh, V., Xu, G., et al.: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55(2), 574–589 (2011)

    Article  Google Scholar 

  13. Heckemann, R.A., Keihaninejad, S., Aljabar, P., et al.: Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 51(1), 221–227 (2010)

    Article  Google Scholar 

  14. Heckemann, R.A., Keihaninejad, S., Aljabar, P., et al.: Automatic morphometry in Alzheimer’s disease and mild cognitive impairment. Neuroimage 56(4), 2024–2037 (2011)

    Article  Google Scholar 

  15. Clarkson, M.J., Ourselin, S., Nielsen, C., et al.: Comparison of phantom and registration scaling corrections using the ADNI cohort. Neuroimage 47(4), 1506–1513 (2009)

    Article  Google Scholar 

  16. Joshi, A., Koeppe, R.A., Fessler, J.A.: Reducing between scanner differences in multi-center PET studies. Neuroimage 46(1), 154–159 (2009)

    Article  Google Scholar 

  17. Yakushev, I., Hammers, A., Fellgiebel, A., et al.: SPM-based count normalization provides excellent discrimination of mild Alzheimer’s disease and amnestic mild cognitive impairment from healthy aging. Neuroimage 44(1), 43–50 (2009)

    Article  Google Scholar 

  18. Breiman, L., Friedman, J.H., Olshen, R.A., et al.: Classification and regression trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  19. Hampel, H., Burger, K., Teipel, S.J., et al.: Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzh. & Dementia 4(1), 38–48 (2008)

    Article  Google Scholar 

  20. Patwardhan, M.B., McCrory, D.C., Matchar, D.B., et al.: Alzheimer disease: operating characteristics of PET – a meta-analysis. Radiology 231(1), 73–80 (2004)

    Article  Google Scholar 

  21. Cuingnet, R., Gerardin, E., Tessieras, J., et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)

    Article  Google Scholar 

  22. Ranginwala, N.A., Hynan, L.S., Weiner, M.F., et al.: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years. Am. J. Geriat. Psychiatry 16(5), 384–388 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D. (2011). Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics