Robust Model-Checking of Timed Automata via Pumping in Channel Machines

  • Patricia Bouyer
  • Nicolas Markey
  • Ocan Sankur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


Timed automata are governed by a mathematical semantics which assumes perfectly continuous and precise clocks. This requirement is not satisfied by digital hardware on which the models are implemented. In fact, it was shown that the presence of imprecisions, however small they may be, may yield extra behaviours. Therefore correctness proven on the formal model does not imply correctness of the real system.

The problem of robust model-checking was then defined to circumvent this inconsistency. It consists in computing a bound on the imprecision under which the system will be correct.

In this work, we show that robust model-checking against ω-regular properties for timed automata can be reduced to standard model-checking of timed automata, by computing an adequate bound on the imprecision. This yields a new algorithm for robust model-checking of ω-regular properties, which is both optimal and valid for general timed automata.


Progress Cycle Linear Temporal Logic Safety Property Time Automaton Delay Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. Journal of Automata, Languages and Combinatorics 10(4), 393–405 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS 2007, Wrocław, Poland, pp. 109–118. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  4. 4.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time properties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 157–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Markey, N., Sankur, O.: Robust model-checking of timed automata via pumping in channel machines. Research Report LSV-11-19, Laboratoire Spécification et Vérification, ENS Cachan, France (2011)Google Scholar
  7. 7.
    Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Formal Methods in System Design 33(1-3), 45–84 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models to timed implementations. Formal Aspects of Comput. 17(3), 319–341 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modeling and analysis of an audio/video protocol: an industrial case study using uppaal. In: RTSS 1997. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  12. 12.
    Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software Tools for Technology Transfer 1, 134–152 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Puri, A.: Dynamical properties of timed systems. Discrete Event Dynamic Systems 10(1-2), 87–113 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yovine, S.: Kronos: A verification tool for real-time systems. International Journal on Software Tools for Technology Transfer 1, 123–133 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Nicolas Markey
    • 1
  • Ocan Sankur
    • 1
  1. 1.LSV, CNRS & ENS CachanFrance

Personalised recommendations