Probabilistic Real-Time Rewrite Theories and Their Expressive Power

  • Lucian Bentea
  • Peter Csaba Ölveczky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


Unbounded data structures, advanced data types, and/or different forms of communication are often needed to model large and complex probabilistic real-time systems such as wireless sensor networks. Furthermore, it is often natural to model such systems in an object-oriented style, using subclass inheritance and dynamic object and message creation and deletion. To support the above features, we introduce probabilistic real-time rewrite theories (PRTRTs), that extend both real-time rewrite theories and probabilistic rewrite theories, as a rewriting-logic-based formalism for probabilistic real-time systems. We then show that PRTRTs can be seen as a unifying model in which a range of other models for probabilistic real-time systems—including probabilistic timed automata, stochastic automata, deterministic and stochastic Petri nets, as well as two probabilistic timed transition system models with underspecified probability distributions—can naturally be represented.


Model Check Round Trip Time Stochastic Transition Nondeterministic Choice Probabilistic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agha, G., Greenwald, M., Gunter, C.A., Khanna, S., Meseguer, J., Sen, K., Thati, P.: Formal modeling and analysis of DoS using probabilistic rewrite theories. In: Proc. FCS 2005 (2005)Google Scholar
  2. 2.
    Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, Springer, Heidelberg (1987)Google Scholar
  3. 3.
    Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2 (1984)Google Scholar
  4. 4.
    AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quantitative analysis tool. To appear in Proc. CALCO 2011 (2011)Google Scholar
  5. 5.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126 (1994)Google Scholar
  6. 6.
    Bentea, L., Ölveczky, P.C.: Probabilistic real-time rewrite theories and their expressive power (2011),
  7. 7.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoretical Computer Science 360(1-3) (2006)Google Scholar
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    D’Argenio, P.R., Katoen, J.P., Brinksma, E.: An algebraic approach to the specification of stochastic systems. In: PROCOMET 1998. Chapman & Hall, Ltd., Boca Raton (1998)Google Scholar
  10. 10.
    De Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University, USA (1998)Google Scholar
  11. 11.
    Gilmore, S., Hillston, J.: The PEPA workbench: A tool to support a process algebra-based approach to performance modelling. In: Computer Performance Evaluation (1994)Google Scholar
  12. 12.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, 2nd edn. Wiley Series in Probability and Statistics, vol. 1. Wiley-Interscience, Hoboken (1994)zbMATHGoogle Scholar
  13. 13.
    Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor protocol through formal modeling and statistical model checking. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kumar, N., Sen, K., Meseguer, J., Agha, G.: Probabilistic rewrite theories: Unifying models, logics and tools. Technical report UIUCDCS-R-2003-2347, Department of Computer Science, University of Illinois at Urbana-Champaign (2003)Google Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic model checking for performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review 36(4) (2009)Google Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282 (2002)Google Scholar
  17. 17.
    Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast protocol. In: SEFM 2009. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  18. 18.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1) (1992)Google Scholar
  19. 19.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation 88(2) (1990)Google Scholar
  21. 21.
    Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in rewriting logic. Theoretical Computer Science 285(2), 359–405 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation 20 (2007)Google Scholar
  24. 24.
    Ölveczky, P.C., Meseguer, J., Talcott, C.: Specification and analysis of the AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in System Design 29, 253–293 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theoretical Computer Science 410(2-3), 254–280 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sen, K., Viswanathan, M., Agha, G.A.: VESTA: A statistical model-checker and analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  27. 27.
    Sproston, J.: Model Checking for Probabilistic Timed and Hybrid Systems. Ph.D. thesis, School of Computer Science, University of Birmingham (2001)Google Scholar
  28. 28.
    Stehr, M.O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework for petri nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Yi, W.: Algebraic reasoning for real-time probabilistic processes with uncertain information. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 680–693. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  30. 30.
    Zhang, H., Hou, J.: Maintaining Sensing Coverage and Connectivity in Large Sensor Networks. Ad Hoc & Sensor Wireless Networks 1(1-2) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lucian Bentea
    • 1
  • Peter Csaba Ölveczky
    • 1
  1. 1.Department of InformaticsUniversity of OsloNorway

Personalised recommendations