Incremental Computation of Succinct Abstractions for Hybrid Systems

  • Tomáš Dzetkulič
  • Stefan Ratschan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


In this paper, we introduce a new approach to computing abstractions for hybrid dynamical systems whose continuous behavior is governed by non-linear ordinary differential equations. The abstractions try to capture the reachability information relevant for a given safety property as succinctly as possible. This is achieved by an incremental refinement of the abstractions, simultaneously trying to avoid increases in their size as much as possible. The approach is independent of a concrete technique for computing reachability information, and can hence be combined with whatever technique suitable for the problem class at hand. We illustrate the usefulness of the technique with computational experiments.


Hybrid System Abstract State Abstract Transition Concrete Syntax Pruning Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. Trans. on Embedded Computing Sys. 5(1), 152–199 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Apt, K.R.: The essence of constraint propagation. Theoretical Computer Science 221(1–2), 179–210 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Apt, K.R.: The role of commutativity in constraint propagation algorithms. ACM Transactions on Programming Languages and Systems 22(6), 1002–1036 (2000)CrossRefGoogle Scholar
  4. 4.
    Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. ch.16, pp. 571–603. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  5. 5.
    Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner, D., Broy, M., Pottosin, I. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Fundamenta Informaticae 89(4), 369–392 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. of Foundations of Comp. Sc. 14(4), 583–604 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cousot, P., Cousot, R.: Automatic synthesis of optimal invariant assertions: Mathematical foundations. In: Proceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages, pp. 1–12 (1977)Google Scholar
  9. 9.
    Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. International Journal of Foundations of Computer Science (IJFCS) 18(1), 63–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dzetkulič, T., Ratschan, S.: How to capture hybrid systems evolution into slices of parallel hyperplanes. In: ADHS 2009: 3rd IFAC Conference on Analysis and Design of Hybrid Systems, pp. 274–279 (2009)Google Scholar
  11. 11.
    Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using forward/backward abstraction refinement. In: DATE 2006: Design, Automation and Test in Europe (2006)Google Scholar
  12. 12.
    Henzinger, T.A., Ho, P.-H.: A note on abstract interpretation strategies for hybrid automata. LNCS, vol. 999, pp. 252–264 (1995)Google Scholar
  13. 13.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic 7(4), 723–748 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 397–408. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Transactions in Embedded Computing Systems 6(1) (2007)Google Scholar
  17. 17.
    Ratschan, S., Smaus, J.-G.: Finding errors of hybrid systems by optimising an abstraction-based quality estimate. In: Dubois, C. (ed.) TAP 2009. LNCS, vol. 5668, pp. 153–168. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Tiwari, A., Gulwani, S.: Logical interpretation: Static program analysis using theorem proving. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 147–166. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tomáš Dzetkulič
    • 1
  • Stefan Ratschan
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicCzech Republic

Personalised recommendations