Skip to main content

Crossing the Bridge between Similar Games

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6919))

Abstract

Specifications and implementations of complex physical systems tend to differ as low level effects such as sampling are often ignored when high level models are created. Thus, the low level models are often not exact refinements of the high level specification. However, they are similar to those. To bridge the gap between those models, we study robust simulation relations for hybrid systems. We identify a family of robust simulation relations that allow for certain bounded deviations in the behavior of a system specification and its implementation in both values of the system variables and timings. We show that for this relaxed version of simulation a broad class of logical properties is preserved. The question whether two systems are in simulation relation can be reduced to a reach avoid problem for hybrid games. We provide a sufficient condition under which a winning strategy for these games exists.

This work was partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Proceedings of the Real-Time: Theory in Practice, REX Workshop, London, UK, pp. 74–106. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  2. Bouyer, P., Brihaye, T., Chevalier, F.: O-minimal hybrid reachability games. Logical Methods in Computer Science 6(1) (2009)

    Google Scholar 

  3. Damm, W., Dierks, H., Disch, S., Hagemann, W., Pigorsch, F., Scholl, C., Waldmann, U., Wirtz, B.: Exact and fully symbolic verification of linear hybrid automata with large discrete state spaces. Science of Computer Programming, Special Issue on Automated Verification of Critical Systems (to appear, 2011)

    Google Scholar 

  4. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design of hybrid systems: Safety and stability. In: Manna, Z., Peled, D. (eds.) Time for Verification. LNCS, vol. 6200, pp. 96–143. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Davoren, J.M.: Epsilon-tubes and generalized skorokhod metrics for hybrid paths spaces. In: [17], pp. 135–149

    Google Scholar 

  6. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. STTT 10(3), 263–279 (2008)

    Article  MATH  Google Scholar 

  9. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

    MATH  Google Scholar 

  11. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid systems. Discrete Event Dynamic Systems 18(2), 163–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for incrementally stable switched systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 201–214. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE CS Press, Los Alamitos (1996)

    Google Scholar 

  14. Henzinger, T.A., Horowitz, B., Majumdar, R.: Rectangular hybrid games. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 320–335. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)

    Article  Google Scholar 

  17. Majumdar, R., Tabuada, P. (eds.): HSCC 2009. LNCS, vol. 5469. Springer, Heidelberg (2009)

    Google Scholar 

  18. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  19. Platzer, A., Quesel, J.D.: Keymaera: A hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Journal in Embedded Computing Systems 6(1) (2007)

    Google Scholar 

  21. Stauner, T.: Discrete-time refinement of hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 407–420. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tomlin, C., Lygeros, J., Sastry, S.: A Game Theoretic Approach to Controller Design for Hybrid Systems. Proceedings of IEEE 88, 949–969 (2000)

    Article  Google Scholar 

  24. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.E.: Stormed hybrid games. In: [17], pp. 480–484

    Google Scholar 

  25. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: from timed models to timed implementations. Formal Asp. Comput. 17(3), 319–341 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quesel, JD., Fränzle, M., Damm, W. (2011). Crossing the Bridge between Similar Games. In: Fahrenberg, U., Tripakis, S. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2011. Lecture Notes in Computer Science, vol 6919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24310-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24310-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24309-7

  • Online ISBN: 978-3-642-24310-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics